Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Celniker is active.

Publication


Featured researches published by Susan E. Celniker.


Nature | 2011

The developmental transcriptome of Drosophila melanogaster

Brenton R. Graveley; Angela N. Brooks; Joseph W. Carlson; Michael O. Duff; Jane M. Landolin; Li Min Yang; Carlo G. Artieri; Marijke J. van Baren; Nathan Boley; Benjamin W. Booth; James B. Brown; Lucy Cherbas; Carrie A. Davis; Alexander Dobin; Renhua Li; Wei Lin; John H. Malone; Nicolas R Mattiuzzo; David S. Miller; David Sturgill; Brian B. Tuch; Chris Zaleski; Dayu Zhang; Marco Blanchette; Sandrine Dudoit; Brian D. Eads; Richard E. Green; Ann S. Hammonds; Lichun Jiang; Phil Kapranov

Drosophila melanogaster is one of the most well studied genetic model organisms, nonetheless its genome still contains unannotated coding and non-coding genes, transcripts, exons, and RNA editing sites. Full discovery and annotation are prerequisites for understanding how the regulation of transcription, splicing, and RNA editing directs development of this complex organism. We used RNA-Seq, tiling microarrays, and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. Together, these data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome

Benjamin P. Berman; Yutaka Nibu; Barret D. Pfeiffer; Pavel Tomancak; Susan E. Celniker; Michael A. Levine; Gerald M. Rubin; Michael B. Eisen

A major challenge in interpreting genome sequences is understanding how the genome encodes the information that specifies when and where a gene will be expressed. The first step in this process is the identification of regions of the genome that contain regulatory information. In higher eukaryotes, this cis-regulatory information is organized into modular units [cis-regulatory modules (CRMs)] of a few hundred base pairs. A common feature of these cis-regulatory modules is the presence of multiple binding sites for multiple transcription factors. Here, we evaluate the extent to which the tendency for transcription factor binding sites to be clustered can be used as the basis for the computational identification of cis-regulatory modules. By using published DNA binding specificity data for five transcription factors active in the early Drosophila embryo, we identified genomic regions containing unusually high concentrations of predicted binding sites for these factors. A significant fraction of these binding site clusters overlap known CRMs that are regulated by these factors. In addition, many of the remaining clusters are adjacent to genes expressed in a pattern characteristic of genes regulated by these factors. We tested one of the newly identified clusters, mapping upstream of the gap gene giant (gt), and show that it acts as an enhancer that recapitulates the posterior expression pattern of gt.


Genome Biology | 2002

Systematic determination of patterns of gene expression during Drosophila embryogenesis

Pavel Tomancak; Amy Beaton; Richard Weiszmann; Elaine Kwan; ShengQiang Shu; Suzanna E. Lewis; Stephen Richards; Michael Ashburner; Volker Hartenstein; Susan E. Celniker; Gerald M. Rubin

BackgroundCell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription.ResultsAs a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns.ConclusionsAnalyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays.


Nature | 2009

Unlocking the secrets of the genome

Susan E. Celniker; Laura A L Dillon; Mark Gerstein; Kristin C. Gunsalus; Steven Henikoff; Gary H. Karpen; Manolis Kellis; Eric C. Lai; Jason D. Lieb; David M. MacAlpine; Gos Micklem; Fabio Piano; Michael Snyder; Lincoln Stein; Kevin P. White; Robert H. Waterston

Despite the successes of genomics, little is known about how genetic information produces complex organisms. A look at the crucial functional elements of fly and worm genomes could change that. The National Human Genome Research Institutes modENCODE project (the model organism ENCyclopedia Of DNA Elements) was set up in 2007 with the goal of identifying all the sequence-based functional elements in the genomes of two important experimental organisms, Caenorhabditis elegans and Drosophila melanogaster. Armed with modENCODE data, geneticists will be able to undertake the comprehensive molecular studies of regulatory networks that hold the key to how complex multicellular organisms arise from the list of instructions coded in the genome. In this issue, modENCODE team members outline their plan of campaign. Data from the project are to be made available on http://www.modencode.org and elsewhere as the work progresses.


Nature | 2007

Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

Alexander Stark; Michael F. Lin; Pouya Kheradpour; Jakob Skou Pedersen; Leopold Parts; Joseph W. Carlson; Madeline A. Crosby; Matthew D. Rasmussen; Sushmita Roy; Ameya N. Deoras; J. Graham Ruby; Julius Brennecke; Harvard FlyBase curators; Berkeley Drosophila Genome; Emily Hodges; Angie S. Hinrichs; Anat Caspi; Benedict Paten; Seung-Won Park; Mira V. Han; Morgan L. Maeder; Benjamin J. Polansky; Bryanne E. Robson; Stein Aerts; Jacques van Helden; Bassem A. Hassan; Donald G. Gilbert; Deborah A. Eastman; Michael D. Rice; Michael Weir

Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or ‘evolutionary signatures’, dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Tools for neuroanatomy and neurogenetics in Drosophila

Barret D. Pfeiffer; Arnim Jenett; Ann S. Hammonds; Teri-T B. Ngo; Sima Misra; Christine Murphy; Audra Scully; Joseph W. Carlson; Kenneth H. Wan; Todd R. Laverty; Christopher J. Mungall; Rob Svirskas; James T. Kadonaga; Chris Q. Doe; Michael B. Eisen; Susan E. Celniker; Gerald M. Rubin

We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.


Genome Biology | 2002

The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective

Joshua S Kaminker; Casey M. Bergman; Brent Kronmiller; Joseph W. Carlson; Robert Svirskas; Sandeep Patel; Erwin Frise; David A. Wheeler; Suzanna E. Lewis; Gerald M. Rubin; Michael Ashburner; Susan E. Celniker

BackgroundTransposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species.ResultsWe identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes.ConclusionsThis analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.


Cell | 2011

A Protein Complex Network of Drosophila melanogaster

K. G. Guruharsha; Jean François Rual; Bo Zhai; Julian Mintseris; Pujita Vaidya; Namita Vaidya; Chapman Beekman; Christina Y. Wong; David Y. Rhee; Odise Cenaj; Emily McKillip; Saumini Shah; Mark Stapleton; Kenneth H. Wan; Charles Yu; Bayan Parsa; Joseph W. Carlson; Xiao Chen; Bhaveen Kapadia; K. VijayRaghavan; Steven P. Gygi; Susan E. Celniker; Robert A. Obar; Spyros Artavanis-Tsakonas

Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.


Genome Biology | 2002

Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence

Susan E. Celniker; David A. Wheeler; Brent Kronmiller; Joseph W. Carlson; Aaron L. Halpern; Sandeep Patel; Mark D. Adams; Mark Champe; Shannon Dugan; Erwin Frise; Ann Hodgson; Reed A. George; Roger A. Hoskins; Todd R. Laverty; Donna M. Muzny; Catherine R. Nelson; Joanne Pacleb; Soo Park; Barret D. Pfeiffer; Stephen Richards; Erica Sodergren; Robert Svirskas; Paul E. Tabor; Kenneth H. Wan; Mark Stapleton; Granger Sutton; Craig Venter; George M. Weinstock; Steven E. Scherer; Eugene W. Myers

BackgroundThe Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions.ResultsOur finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp.ConclusionsThe WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.

Collaboration


Dive into the Susan E. Celniker's collaboration.

Top Co-Authors

Avatar

Joseph W. Carlson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerald M. Rubin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Wan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ann S. Hammonds

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James B. Brown

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roger A. Hoskins

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Soo Park

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Yu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark Stapleton

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Weiszmann

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge