Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Schrier is active.

Publication


Featured researches published by Joshua Schrier.


Nature Communications | 2011

From computational discovery to experimental characterization of a high hole mobility organic crystal

Anatoliy N. Sokolov; Sule Atahan-Evrenk; Rajib Mondal; Hylke B. Akkerman; Roel S. Sánchez-Carrera; Sergio Granados-Focil; Joshua Schrier; Stefan C. B. Mannsfeld; Arjan P. Zoombelt; Zhenan Bao; Alán Aspuru-Guzik

For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm2 V−1 s−1, respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm2 V−1 s−1 reported to date.


Nature | 2016

Machine-learning-assisted materials discovery using failed experiments

Paul Raccuglia; Katherine C. Elbert; Philip Adler; Casey Falk; Malia B. Wenny; Aurelio Mollo; Matthias Zeller; Sorelle A. Friedler; Joshua Schrier; Alexander J. Norquist

Inorganic–organic hybrid materials such as organically templated metal oxides, metal–organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure–property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.


ACS Applied Materials & Interfaces | 2011

Fluorinated and Nanoporous Graphene Materials As Sorbents for Gas Separations

Joshua Schrier

The physisorption of gases on surfaces depends on the electrostatic and dispersion interactions with adsorbates. The former can be tuned by introducing charge variations in the material, and the latter can be tuned by chemical substitution. Using atomistic Monte Carlo calculations, the Henrys law constants, and isosteric heats of adsorption of CH(4), CO(2), N(2), O(2), H(2)S, SO(2), and H(2)O on graphene, two-dimensional polyphenylene (2D-PP), fluorographene, and fluoro(2D-PP) surfaces are used to demonstrate the tunability of these two types of interaction. With the exception of H(2)O, fluorination and nanoporosity-induced charge variations reduce the binding of the adsorbates. Gas separations relevant for CO(2) sequestration, biogas upgrading, SO(2) pollution control, and air dehumidification are considered, and in most cases, the nanoporosity and fluorination reduce the selectivity of adsorption. The exceptions are separations involving adsorption of H(2)O and the SO(2)/N(2) separation, where the large dipole moments of the adsorbed species leads to enhanced binding relative to the nonpolar species.


ACS Applied Materials & Interfaces | 2012

Carbon Dioxide Separation with a Two-Dimensional Polymer Membrane

Joshua Schrier

Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.


Nano Letters | 2008

Electronic Structure and Spectroscopy of Cadmium Telluride Quantum Wires

Jianwei Sun; William E. Buhro; Lin-Wang Wang; Joshua Schrier

The size-dependent electronic structure of CdTe quantum wires is determined by density functional theory using the local density approximation with band-corrected pseudopotential method. The results of the calculations are then used to assign the size-dependent absorption spectrum of colloidal CdTe quantum wires synthesized by the solution-liquid-solid mechanism. Quantitative agreement between experiment and theory is achieved. The absorption features comprise transitions involving the highest 25-30 valence-band states and lowest 15 conduction-band states. Individual transitions are not resolved; rather, the absorption features consist of clusters of transitions that are determined by the conduction-band energy-level spacings. The sequence, character, and spacing of the conduction-band states are strikingly consistent with the predictions of the simple effective-mass-approximation, particle-in-a-cylinder model. The model is used to calculate the size dependence of the electron effective mass in CdTe quantum wires.


Journal of Physical Chemistry B | 2000

The g-Factor Anisotropy of Plant Chlorophyll a•+

Joshua Schrier; P. J. Pratt; O. G. Poluektov; M. C. Thurnauer

High-field EPR experiments at 12 T/330 GHz were performed on chlorophyll a radical cations in methylene chloride at low temperatures. Using fully deuterated chlorophyll it was possible to obtain the principal components of the rhombic g-tensor as g{sub {alpha}} = 2.00329 {+-} (5 x 10{sup -5}), g{sub {beta}} = 2.00275 {+-} (8 x 10{sup -5}), and g{sub {gamma}} = 2.00220 {+-} (8 x 10{sup -5}). Protonated chlorophyll radicals did not give enough spectral resolution to yield the g-anisotropy from the EPR spectrum. This was true even at higher field/frequency combinations up to 24 T/670 GHz. Semiempirical calculations were performed using the INDO/S method (ZINDO) which yielded good agreement with the experimental data.


Inorganic Chemistry | 2012

Role of Hydrogen-Bonding in the Formation of Polar Achiral and Nonpolar Chiral Vanadium Selenite Frameworks

Jacob H. Olshansky; Thanh Thao Tran; Kristen J. Hernandez; Matthias Zeller; P. Shiv Halasyamani; Joshua Schrier; Alexander J. Norquist

A series of organically templated vanadium selenites have been prepared under mild hydrothermal conditions. Single crystals were grown from mixtures of VOSO(4), SeO(2), and either 1,4-dimethylpiperazine, 2,5-dimethylpiperazine, or 2-methylpiperazine in H(2)O. Each compound contains one-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) secondary building units, which connect to form three-dimensional frameworks in the presence of 2,5-dimethylpiperazine or 2-methylpiperazine. Differences in composition and both intra-secondary building unit and organic-inorganic hydrogen-bonding between compounds dictate the dimensionality of the resulting inorganic structures. [1,4-dimethylpiperazineH(2)][VO(SeO(3))(HSeO(3))](2) contains one-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) chains, while [2,5-dimethylpiperazineH(2)][VO(SeO(3))(HSeO(3))](2)·2H(2)O contains a three-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) framework. The use of racemic 2-methylpiperazine also results in a compound containing a three-dimensional [VO(SeO(3))(HSeO(3))](n)(n-) framework, crystallizing in the noncentrosymmetric polar, achiral space group Pca2(1) (no. 29), while analogous reactions containing either (R)-2-methylpiperazine or (S)-2-methylpiperazine result in noncentrosymmetric, nonpolar chiral frameworks that crystallize in P2(1)2(1)2 (no. 18). The formation of these noncentrosymmetric framework materials is dictated by the structure, symmetry, and hydrogen-bonding properties of the [2-methylpiperazineH(2)](2+) cations.


Inorganic Chemistry | 2010

The role of stereoactive lone pairs in templated vanadium tellurite charge density matching.

Kelvin B. Chang; Desmond J. Hubbard; Matthias Zeller; Joshua Schrier; Alexander J. Norquist

The role of charge density matching was investigated in the formation of templated vanadium tellurites under mild hydrothermal conditions. Reactions were conducted using a fixed NaVTeO(5):amine ratio in an ethanol/water solution to isolate the effects of amine structure. The use of 1,4-diaminobutane, 1,3-diaminopropane, and piperazine resulted in three distinct vanadium tellurite connectivities, [V(2)Te(2)O(10)](n)(2n-) chains, [V(2)TeO(8)](n)(2n-) layers, and [V(2)Te(2)O(10)](n)(2n-) layers, respectively. Charge density matching with the protonated amines is the primary influence over the structure of each vanadium tellurite anion, as quantified by molecular surface area and geometric decomposition methods. Electron localization functions were calculated using the Stuttgart tight-binding linear muffin-tin orbital, atomic sphere approximation code, to visualize the location and relative size, shape, and orientation of the stereoactive lone pair in the tellurite groups. [C(4)H(14)N(2)][V(2)Te(2)O(10)]: a = 5.649(5) A, b = 6.348(5) A, c = 9.661(5) A, alpha = 84.860(5) degrees , beta = 85.380(5) degrees , gamma = 81.285(5) degrees , triclinic, P1 (No. 2), Z = 1.


Journal of Nanoscience and Nanotechnology | 2008

Mechanical and electronic-structure properties of compressed CdSe tetrapod nanocrystals

Joshua Schrier; Byounghak Lee; Lin-Wang Wang

The coupling of mechanical and optical properties in semiconductor nanostructures can potentially lead to new types of devices. This work describes our theoretical examination of the mechanical properties of CdSe tetrapods under directional forces, such as may be induced by AFM tips. In addition to studying the general behavior of the mechanical properties under modifications of geometry, nanocrystal-substrate interaction, and dimensional scaling, our calculations indicate that mechanical deformations do not lead to large changes in the band-edge state eigenenergies, and have only a weak effect on the oscillator strengths of the lowest energy transitions.


Journal of Physical Chemistry A | 2014

Helium Isotope Enrichment by Resonant Tunneling through Nanoporous Graphene Bilayers

Salvatore Mandrà; Joshua Schrier; Michele Ceotto

Graphene is impermeable to gases, but introducing subnanometer pores can allow for selective gas separation. Because graphene is only one atom thick, tunneling can play an important role, especially for low-mass gases such as helium, and this has been proposed as a means of separating (3)He from (4)He. In this paper, we consider the possibility of utilizing resonant tunneling of helium isotopes through nanoporous graphene bilayers. Using a model potential fit to previously reported DFT potential energy surfaces, we calculate the thermal rate constant as a function of interlayer separation using a recently described time-independent method for arbitrary multibarrier potentials. Resonant transmission allows for the total flux rate of (3)He to remain the same as the best-known single-barrier pores but doubles the selectivity with respect to (4)He when the optimal interlayer spacing of 4.6 Å is used. The high flux rate and selectivity are robust against variations of the interlayer spacing and asymmetries in the potential that may occur in experiment.

Collaboration


Dive into the Joshua Schrier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin-Wang Wang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge