Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua W. Hamilton is active.

Publication


Featured researches published by Joshua W. Hamilton.


Environmental Health Perspectives | 2006

Arsenic Exposure Is Associated with Decreased DNA Repair in Vitro and in Individuals Exposed to Drinking Water Arsenic

Angeline S. Andrew; Jefferey L. Burgess; Maria Mercedes Meza; Eugene Demidenko; Mary G. Waugh; Joshua W. Hamilton; Margaret R. Karagas

The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action.


International Journal of Cancer | 2003

Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water.

Angeline S. Andrew; Margaret R. Karagas; Joshua W. Hamilton

Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399–405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case‐control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r2 = 0.82, p < 0.0001), XPF (r2 = 0.56, p < 0.002), and XPB (r2 = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co‐carcinogenic activity of arsenic.


Environmental Health Perspectives | 2007

Arsenic as an Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor–and Thyroid Hormone Receptor–Mediated Gene Regulation and Thyroid Hormone–Mediated Amphibian Tail Metamorphosis

Jennifer C. Davey; Athena P. Nomikos; Manida Wungjiranirun; Jenna R. Sherman; Liam Ingram; Cavus Batki; Jean P. Lariviere; Joshua W. Hamilton

Background Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. Objectives The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Methods and results Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01–5 μM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element–luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element–luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1– 4.0 μM As. Conclusions As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult function and their dysregulation is associated with many disease processes, disruption of these hormone receptor–dependent processes by As is also potentially relevant to human developmental problems and disease risk.


Molecular and Cellular Biology | 2003

Nucleotide Excision Repair- and Polymerase η-Mediated Error-Prone Removal of Mitomycin C Interstrand Cross-Links

Huyong Zheng; Xin Wang; Amy J. Warren; Randy J. Legerski; Rodney S. Nairn; Joshua W. Hamilton; Lei Li

ABSTRACT Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase η encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.


Archives of Biochemistry and Biophysics | 1991

Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription.

Joshua W. Hamilton; William J. Bement; Peter R. Sinclair; Jacqueline F. Sinclair; Joy A. Alcedo; Karen E. Wetterhahn

Hepatic 5-aminolevulinate (ALA) synthase, the first and rate-limiting enzyme in the heme biosynthetic pathway, is known to be feedback repressed by the end product of the pathway, heme. We investigated whether heme regulates ALA synthase mRNA expression transcriptionally or post-transcriptionally in primary cultures of chick embryo hepatocytes. 2-Propyl-2-isopropylacetamide increased the rate of transcription of the ALA synthase gene, whereas heme or an inhibitor of heme biosynthesis, desferrioximine, had no effect on the drug-induced transcription rate. Heme decreased the half-life of ALA synthase mRNA from approximately 3.5 h to 1.2 as recently reported by Drew and Ades (1989, Biochem. Biophys. Res. Commun. 162, 102-107). We also found that the heme-mediated decrease in mRNA stability was prevented by cycloheximide treatment, suggesting that the heme effect was mediated by a labile protein. These results support a model for hepatic ALA synthase regulation in which inducing drugs directly stimulate ALA synthase gene transcription, whereas heme regulates ALA synthase expression post-transcriptionally by modulating mRNA stability as well as by blocking translocation of ALA synthase enzyme into the mitochondrion.


Environmental Health Perspectives | 2009

Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

Courtney D. Kozul; Thomas H. Hampton; Jennifer C. Davey; Julie A. Gosse; Athena P. Nomikos; Phillip L. Eisenhauer; Daniel J. Weiss; Jessica E. Thorpe; Michael A. Ihnat; Joshua W. Hamilton

Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung.


BMC Genomics | 2007

Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

Joseph R. Shaw; John K. Colbourne; Jennifer C. Davey; Stephen P. Glaholt; Thomas H. Hampton; Celia Y. Chen; Carol L. Folt; Joshua W. Hamilton

BackgroundGenomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant.ResultsOur microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs.ConclusionThe genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.


Environmental Toxicology and Chemistry | 2006

Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids

Joseph R. Shaw; Thomas D. Dempsey; Celia Y. Chen; Joshua W. Hamilton; Carol L. Folt

Investigations were conducted to determine acute (48-h) effects of cadmium and zinc presented individually and in combination on Ceriodaphnia dubia, Daphnia magna, Daphnia ambigua, and Daphnia pulex. Toxicity tests were conducted with single metals to determine lethal effects concentrations (lethal concentrations predicted for a given percent [x] of a population, LCx value). These were used to derive metal combinations that spanned a range of effects and included mixtures of LC15, LC50, and LC85 values calculated for each metal and species. In single-metal tests, 48-h LC50 values ranged from 0.09 to 0.9 micromol/L and 4 to 12.54 micromol/L for cadmium and zinc, respectively. For each metal, D. magna was most tolerant and showed a different pattern of response from all others as determined by slope of concentration-response curves. In the combined metal treatments, all daphnids showed a similar pattern of response when LC15 concentrations were combined. This trend continued with few exceptions when LC15 concentrations of cadmium were combined with LC50 or LC85 values for zinc. However, when this treatment was reversed (LC15, zinc + LC50 or LC85, cadmium), responses of all species except D. magna indicated less-than-additive effects. For C. dubia, a near complete reduction in toxicity was observed when the LC15 for zinc was combined with LC85 for cadmium. Multimetal tests with D. magna did not differ from additive. Collectively, these studies suggest that D. magna may not be representative of other cladocerans.


Biological Trace Element Research | 1989

Mechanism of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression.

Karen E. Wetterhahn; Joshua W. Hamilton; Jayshree Aiyar; Kim M. Borges; Robert A. Floyd

Since chromium(VI) is unreactive toward DNA under physiological conditions in vitro, the ability of carcinogenic chromium(VI) compounds to damage DNA depends on the presence of cellular redox components that reduce chromium(VI) to reactive species capable of interacting with DNA. We have examined the role of glutathione and hydrogen peroxide in chromium(VI)-induced DNA damage in vitro. Upon reaction with chromium(VI), glutathione produced chromium(V) and glutathione thiyl radical reactive intermediates, whereas hydrogen peroxide produced chromium(V) and hydroxyl radical. Reaction of DNA with chromium(VI) in the presence of glutathione resulted in binding of chromium and glutathione to DNA with little or no DNA strand breakage. Reaction of DNA with chromium(VI) in the presence of hydrogen peroxide produced the 8-hydroxydeoxy-guanosine adduct and extensive DNA strand breakage in the absence of significant Cr-DNA adduct formation. These results suggest that the nature of chromium(VI)-induced DNA damage will be strongly dependent on reactive intermediates such as chromium(V), glutathione thiyl radical, and hydroxyl radical, produced by cellular components active in chromium(VI) metabolism. In order to assess the ability of chromium(VI)-induced DNA damage to affect the normal template function of DNA, we investigated the effects of chromium(VI) on steady-state mRNA levels of various genes in chick embryo liver in vivo, and compared the effects to the levels of DNA damage observed. Chromium(VI) induced DNA-protein and DNA interstrand cross-links in chick embryo liver in vivo and suppressed the induction of 5-aminolevulinic acid synthase and cytochrome P-450 mRNA expression by porphyrinogenic drugs. In contrast, chromium(VI) increased the basal levels of expression of these two inducible genes, but had little or no effect on the expression of the constitutive albumin, β-actin, and conalbumin genes. Comparison of the time course of formation and repair of DNA damage with that of changes in gene expression suggests that chromium(VI) may form a mono-adduct prior to formation of DNA cross-links, and that chromium(VI)-induced DNA lesions may target certain classes of genes and lead to changes in their expression.


Molecular Carcinogenesis | 1999

Differential effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding

Ronald C. Kaltreider; Carrie A. Pesce; Michael A. Ihnat; Jean P. Lariviere; Joshua W. Hamilton

The toxic metals arsenic(III) and chromium(VI) are considered human carcinogens, although they may act through different mechanisms. We previously showed that when administered at single low, non‐overtly toxic doses, chromium, arsenic, and several other chemical carcinogens preferentially alter expression of several model inducible genes in both whole‐animal and cell‐culture systems. In this study, we assessed whether chromium and arsenic target specific signaling pathways within cells to selectively modulate gene expression. We examined the effects of non‐cytotoxic and cytotoxic doses of arsenic(III) and chromium(VI) on nuclear binding of the transcription factors AP‐1, NF‐κB, Sp1, and YB‐1 in human MDA‐MB‐435 breast cancer and rat H4IIE hepatoma cells. These transcription factors were chosen because they may regulate many inducible genes, including those previously shown to be altered by metal treatments. We report that both arsenic and chromium significantly altered nuclear binding levels of these factors to their respective cis‐acting elements. However, there were qualitative and quantitative differences in these effects that were dependent on the metal, time, dose, transcription factor, and cell line. These effects may play a significant role in metal‐induced alterations in gene expression. Mol. Carcinog. 25:219–229, 1999.

Collaboration


Dive into the Joshua W. Hamilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph R. Shaw

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge