Jotham Suez
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jotham Suez.
Nature | 2014
Jotham Suez; Tal Korem; David Zeevi; Gili Zilberman-Schapira; Christoph A. Thaiss; Ori Maza; David Israeli; Niv Zmora; Shlomit Gilad; Adina Weinberger; Yael Kuperman; Alon Harmelin; Ilana Kolodkin-Gal; Hagit Shapiro; Zamir Halpern; Eran Segal; Eran Elinav
Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.
Cell | 2015
David Zeevi; Tal Korem; Niv Zmora; David Israeli; Daphna Rothschild; Adina Weinberger; Orly Ben-Yacov; Dar Lador; Tali Avnit-Sagi; Maya Lotan-Pompan; Jotham Suez; Jemal Ali Mahdi; Elad Matot; Gal Malka; Noa Kosower; Michal Rein; Gili Zilberman-Schapira; Lenka Dohnalová; Meirav Pevsner-Fischer; Rony Bikovsky; Zamir Halpern; Eran Elinav; Eran Segal
Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.
Science | 2015
Tal Korem; David Zeevi; Jotham Suez; Adina Weinberger; Tali Avnit-Sagi; Maya Pompan-Lotan; Elad Matot; Ghil Jona; Alon Harmelin; Nadav Cohen; Alexandra Sirota-Madi; Christoph A. Thaiss; Meirav Pevsner-Fischer; Rotem Sorek; Ramnik J. Xavier; Eran Elinav; Eran Segal
Estimating bacterial growth dynamics The pattern of sequencing read coverage of bacteria in metagenomic samples reflects the growth rate. This pattern is predictive of growth because bacterial genomes are circular, with a single origin of replication. So during growth, copies of the genome accumulate at the origin. Korem et al. use the ratio of copy number at the origin to the copy number at the terminus to detect the actively growing species in a microbiome (see the Perspective by Segre). They could spot the difference between virulent and avirulent strains, population diurnal oscillations, species that are growing in irritable bowel disease, and what happens when a hosts diet changes. Results were consistent in chemostats, in mice, and in human fecal samples. Science, this issue p. 1101; see also p. 1058 A new method provides a quantitative measure of the growth rate of multiple gut microbes in one go. [Also see Perspective by Segre] Metagenomic sequencing increased our understanding of the role of the microbiome in health and disease, yet it only provides a snapshot of a highly dynamic ecosystem. Here, we show that the pattern of metagenomic sequencing read coverage for different microbial genomes contains a single trough and a single peak, the latter coinciding with the bacterial origin of replication. Furthermore, the ratio of sequencing coverage between the peak and trough provides a quantitative measure of a species’ growth rate. We demonstrate this in vitro and in vivo, under different growth conditions, and in complex bacterial communities. For several bacterial species, peak-to-trough coverage ratios, but not relative abundances, correlated with the manifestation of inflammatory bowel disease and type II diabetes.
Current Opinion in Immunology | 2014
Christoph A. Thaiss; Maayan Levy; Jotham Suez; Eran Elinav
The human gastrointestinal tract harbors one of the highest densities of microorganisms on earth, called the microbiota. In fact, the number of microbial cells in the intestine outnumbers the amount of human cells of the entire organism by a factor of 10. As such, a human being is more and more perceived as a super-organism consisting of a eukaryotic and a prokaryotic part. The compartment mediating the communication between both parts is the innate immune system and its various microbe-sensing pattern-recognition receptors. Co-evolution of the microbiota with the innate immune system has resulted in elaborate interdependency and feedback mechanisms by which both systems control mutual homeostasis. Here, we review the most important innate immune-microbiota interdependencies known to date. While microbial sensing by pattern-recognition receptors is required for stable microbial composition, the presence of the microbiota, in turn, is necessary for proper development and function of the immune system.
Gut microbes | 2015
Jotham Suez; Tal Korem; Gili Zilberman-Schapira; Eran Segal; Eran Elinav
Non-caloric artificial sweeteners (NAS) are common food supplements consumed by millions worldwide as means of combating weight gain and diabetes, by retaining sweet taste without increasing caloric intake. While they are considered safe, there is increasing controversy regarding their potential ability to promote metabolic derangements in some humans. We recently demonstrated that NAS consumption could induce glucose intolerance in mice and distinct human subsets, by functionally altering the gut microbiome. In this commentary, we discuss these findings in the context of previous and recent works demonstrating the effects of NAS on host health and the microbiome, and the challenges and open questions that need to be addressed in understanding the effects of NAS consumption on human health.
Laboratory Animals | 2014
G Hecht; C Bar-Nathan; G Milite; I Alon; Y Moshe; L Greenfeld; N Dotsenko; Jotham Suez; Maayan Levy; Christoph A. Thaiss; H Dafni; Eran Elinav; Alon Harmelin
The use of germ-free (GF) isolators for microbiome-related research is exponentially increasing, yet limited by its cost, isolator size and potential for trans-contamination. As such, current isolator technology is highly limiting to researchers engaged in short period experiments involving multiple mouse strains and employing a variety of mono-inoculated microorganisms. In this study, we evaluate the use of positive pressure Isocages as a solution for short period studies (days to 2–3 weeks) of experimentation with GF mice at multiple simultaneous conditions. We demonstrate that this new Isocage technology is cost-effective and room-sparing, and enables maintenance of multiple simultaneous groups of GF mice. Using this technology, transferring GF mice from isolators to Isocage racks for experimentation, where they are kept under fully germ-free conditions, enables parallel inoculation with different bacterial strains and simultaneous experimentation with multiple research conditions. Altogether, the new GF Isocage technology enables the expansion of GF capabilities in a safe and cost-effective manner that can facilitate the growth, elaboration and flexibility of microbiome research.
Nature microbiology | 2017
Jotham Suez; Eran Elinav
The increasing evidence pointing towards the involvement of the gut microbiome in multiple diseases, as well as its plasticity, renders it a desirable potential therapeutic target. Nevertheless, classical therapies based on the consumption of live probiotic bacteria, or their enrichment by prebiotics, exhibit limited efficacy. Recently, a novel therapeutic approach has been suggested based on metabolites secreted, modulated or degraded by the microbiome. As many of the host–microorganism interactions pertaining to human health are mediated by metabolites, this approach may be able to provide therapeutic efficacy while overcoming caveats of current microbiome-targeting therapies, such as colonization resistance and inter-individual variation in microbial composition. In this Perspective, we will discuss the evidence that supports pursuing the metabolite-based therapeutic approach as well as issues critical for its implementation. In a broader context, we will discuss how recent advances in microbiome research may improve and refine current treatment modalities, and the potential of combining them with metabolite-based interventions as a means of achieving a person-specific, integrated and efficient therapy.
Seminars in Immunopathology | 2015
Maayan Levy; Christoph A. Thaiss; Meirav N. Katz; Jotham Suez; Eran Elinav
Inflammasomes are multiprotein complexes that serve as signaling platforms initiating innate immune responses. These structures are assembled upon a large array of stimuli, sensing both microbial products and endogenous signals indicating loss of cellular homeostasis. As such, inflammasomes are regarded as sensors of cellular integrity and tissue health, which, upon disruption of homeostasis, provoke an inflammatory response by the release of potent cytokines. Recent evidence suggests that in addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the host and its indigenous microbiota. Here, we summarize the involvement of various inflammasomes in host–microbiota interactions and focus on the role of commensal as well as pathogenic bacteria in inflammasome signaling.
Journal of Diabetes | 2017
Hagit Shapiro; Jotham Suez; Eran Elinav
Personalized or precision medicine is a novel clinical approach targeted to the individual patient and based on integration of clinical, genetic, and environmental factors that define a patient uniquely from other individuals featuring similar clinical symptoms. Such a personalized medicine approach is increasingly applied for diagnosis, clinical stratification, and treatment of metabolic syndrome (MetS)‐associated risks and diseases, including obesity, type 2 diabetes, non‐alcoholic fatty liver disease, and their complications. One emerging factor that governs MetS manifestations is the microbiome, the composition, function, growth dynamics, associated metabolite profile and diverse effects of which on host immune and metabolic systems can all significantly affect metabolic homeostasis. Interindividual differences in microbiome composition and function, as well as personal variations in microbial‐derived products, pave the way towards microbiome‐based personalized medicine in treating MetS‐related diseases.
Nature microbiology | 2018
Caroline Mullineaux-Sanders; Jotham Suez; Eran Elinav; Gad Frankel
The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host–pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.The colonization resistance paradigm is explored, with a focus on the benefits and limitations of current murine models used to assess the role of the microbiota in enteric infection.