Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jovan D. Kečkić is active.

Publication


Featured researches published by Jovan D. Kečkić.


Archive | 1993

Master’s dissertation of J. V. Sohocki

D. S. Mitrinović; Jovan D. Kečkić

This section is devoted to Master’s dissertation of the Russian mathematician J. V. Sohocki which was published under the title The theory of integral residues with some applications (Russian), St. Petersbourg 1868, VIII+135 pp.


Archive | 1993

Applications of Calculus of Residues to Special Functions

D. S. Mitrinović; Jovan D. Kečkić

The polygamma functions Ψ (n) are defined for nonnegative integers n by


Archive | 1993

Evaluation of Finite and Infinite Sums by Residues

D. S. Mitrinović; Jovan D. Kečkić


Archive | 1993

Evaluation of Residues

D. S. Mitrinović; Jovan D. Kečkić

{\psi ^{\left( n \right)}}\left( x \right) = {\left( {\frac{d}{{dx}}} \right)^{n + 1}}\log \Gamma \left( x \right).


Archive | 1993

Evaluation of Real Definite Integrals by Means of Residues

D. S. Mitrinović; Jovan D. Kečkić


The Mathematical Gazette | 1984

The Cauchy Method of Residues

Mary Hart; D. S. Mitrinović; Jovan D. Kečkić


Archive | 1984

The Cauchy method of residues : theory and applications

D. S. Mitrinović; Jovan D. Kečkić

Suppose that k and n are positive integers and let


Archive | 1980

Predavanja o redovima

D. S. Mitrinović; Jovan D. Kečkić


The Mathematical Gazette | 1993

The Cauchy Method of Residues Volume 2

Nick Lord; D. S. Mitrinović; Jovan D. Kečkić

{T_k} = \exp \left( {\frac{{2\pi i{k^2}}}{n}} \right)


Archive | 1993

Applications of Calculus of Residues in the Theory of Functions

D. S. Mitrinović; Jovan D. Kečkić

Collaboration


Dive into the Jovan D. Kečkić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Hart

University of Sheffield

View shared research outputs
Researchain Logo
Decentralizing Knowledge