Jovana Zečević
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jovana Zečević.
Nature Materials | 2013
Gonzalo Prieto; Jovana Zečević; Heiner Friedrich; Krijn P. de Jong; Petra E. de Jongh
Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.
Angewandte Chemie | 2010
Krijn P. de Jong; Jovana Zečević; Heiner Friedrich; Petra E. de Jongh; Metin Bulut; Sander van Donk; Régine Kenmogne; Annie Finiels; Vasile Hulea; François Fajula
Effektive Poren: Zeolith-Y-Kristalle mit Mikroporen (ca. 1 nm), kleinen (ca. 3 nm) und grosen Mesoporen (ca. 30 nm) wurden aus zuvor mit Dampf und Saure behandeltem Material durch Auslaugen mit Base erhalten. Die Zeolith-Y-Kristalle mit trimodaler Porositat (siehe elektronentomographische Aufnahme) zeigen beim Hydrocracking eine nahezu ideale Selektivitat fur und erhohte Ausbeuten an Kerosin und Diesel.
Nature | 2015
Jovana Zečević; Gina Vanbutsele; Krijn P. de Jong; Johan A. Martens
The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.
ACS Nano | 2013
Jovana Zečević; A.J. M. van der Eerden; Heiner Friedrich; P.E. de Jongh; K.P. de Jong
To develop structure-performance relationships for important catalysts, a detailed characterization of their morphology is essential. Using electron tomography, we determined in three dimensions the structure of Pt/zeolite Y bifunctional catalysts. Optimum experimental conditions enabled for the first time high-resolution 3D imaging of Pt particles as small as 1 nm located inside zeolite micropores. Semiautomated image analysis of 3D reconstructions provided an efficient study of numbers, size distributions, and interparticle distances of thousands of Pt particles within individual zeolite crystals. Upon extending this approach to a number of zeolite crystals of one batch of Pt/zeolite Y catalyst, heterogeneities were revealed. The Pt loading, an important parameter for catalyst performance, varied between zeolite crystals up to a factor of 35. This discovery calls for re-evaluation of catalyst preparation methods and suggests potential for lowering the nominal loading with noble metals.
Angewandte Chemie | 2015
Cédric Gommes; Gonzalo Prieto; Jovana Zečević; Maja Vanhalle; Bart Goderis; Krijn P. de Jong; Petra E. de Jongh
The properties of many functional materials depend critically on the spatial distribution of an active phase within a support. In the case of solid catalysts, controlling the spatial distribution of metal (oxide) nanoparticles at the mesoscopic scale offers new strategies to tune their performance and enhance their lifetimes. However, such advanced control requires suitable characterization methods, which are currently scarce. Here, we show how the background in small-angle X-ray scattering patterns can be analyzed to quantitatively access the mesoscale distribution of nanoparticles within supports displaying hierarchical porosity. This is illustrated for copper catalysts supported on meso- and microporous silica displaying distinctly different metal distributions. Results derived from X-ray scattering are in excellent agreement with electron tomography. Our strategy opens unprecedented prospects for understanding the properties and to guide the synthesis of a wide array of functional nanomaterials.
Scientific Reports | 2017
Daria Kondrashova; Alexander Lauerer; Dirk Mehlhorn; Hervé Jobic; Armin Feldhoff; Matthias Thommes; D. Chakraborty; Céderic Gommes; Jovana Zečević; Petra E. de Jongh; Armin Bunde; Jörg Kärger; Rustem Valiullin
Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.
Nature Communications | 2017
Xiaohui Sun; Alma I. Olivos Suarez; Mark Meijerink; Tom W. van Deelen; Samy Ould-Chikh; Jovana Zečević; Krijn P. de Jong; Freek Kapteijn; Jorge Gascon
The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer–Tropsch synthesis.Preparation of supported catalysts with high nanoparticle loading is a considerable synthetic challenge. Here, by using a metal organic framework as sacrificial template, the authors report a cobalt catalyst with a 50% Co loading with superior activity in the C5+ selective production of hydrocarbons from syngas.
Chemcatchem | 2013
Jovana Zečević; Krijn P. de Jong
Playing with a full deck: A simple, one-step synthesis of self-pillared zeolite MFI nanosheets was realized with the use of a surprisingly simple structure directing agent. Nanosheets were intergrown in an open “house of cards” arrangement with combined micropores and mesopores. Hierarchical porosity of this catalyst resulted in improved catalytic performance.
Small | 2017
Jovana Zečević; Justus Hermannsdörfer; Tobias Schuh; Krijn P. de Jong; Niels de Jonge
Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid.
Nature Materials | 2017
Krijn P. de Jong; Jovana Zečević
Ultra-stable and catalytic platinum atoms and clusters have been obtained by entrapment within a zeolite framework during its formation.