Joyce A. Boucheron
Research Triangle Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joyce A. Boucheron.
Mutation Research | 1990
Vernon E. Walker; Timothy R. Fennell; Joyce A. Boucheron; Norbert Fedtke; Françoise Ciroussel; James A. Swenberg
The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1-10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3-5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life of approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.
PLOS ONE | 2015
Deepak K. Rajpal; Jean-Louis Klein; David L. Mayhew; Joyce A. Boucheron; Aaron Spivak; Vinod Kumar; Karen A. Ingraham; Mark A. Paulik; Lihong Chen; Stephanie Van Horn; Elizabeth Thomas; Ganesh M. Sathe; George P. Livi; David J. Holmes; James R. Brown
The gastrointestinal tract microbiome has been suggested as a potential therapeutic target for metabolic diseases such as obesity and Type 2 diabetes mellitus (T2DM). However, the relationship between changes in microbial communities and metabolic disease-phenotypes are still poorly understood. In this study, we used antibiotics with markedly different antibacterial spectra to modulate the gut microbiome in a diet-induced obesity mouse model and then measured relevant biochemical, hormonal and phenotypic biomarkers of obesity and T2DM. Mice fed a high-fat diet were treated with either ceftazidime (a primarily anti-Gram negative bacteria antibiotic) or vancomycin (mainly anti-Gram positive bacteria activity) in an escalating three-dose regimen. We also dosed animals with a well-known prebiotic weight-loss supplement, 10% oligofructose saccharide (10% OFS). Vancomycin treated mice showed little weight change and no improvement in glycemic control while ceftazidime and 10% OFS treatments induced significant weight loss. However, only ceftazidime showed significant, dose dependent improvement in key metabolic variables including glucose, insulin, protein tyrosine tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Subsequently, we confirmed the positive hyperglycemic control effects of ceftazidime in the Zucker diabetic fatty (ZDF) rat model. Metagenomic DNA sequencing of bacterial 16S rRNA gene regions V1-V3 showed that the microbiomes of ceftazidime dosed mice and rats were enriched for the phylum Firmicutes while 10% OFS treated mice had a greater abundance of Bacteroidetes. We show that specific changes in microbial community composition are associated with obesity and glycemic control phenotypes. More broadly, our study suggests that in vivo modulation of the microbiome warrants further investigation as a potential therapeutic strategy for metabolic diseases.
Bioorganic & Medicinal Chemistry Letters | 2009
Stephen A. Thomson; Pierette Banker; David M. Bickett; Joyce A. Boucheron; H.L Carter; Daphne C. Clancy; Joel P. Cooper; Scott Howard Dickerson; Dulce Maria Garrido; Robert T. Nolte; Andrew J. Peat; Lauren R. Sheckler; Steven M. Sparks; Francis X. Tavares; Liping Wang; Tony Y. Wang; James E. Weiel
Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.
Bioorganic & Medicinal Chemistry Letters | 2008
Karen A. Evans; Yue H. Li; Frank T. Coppo; Todd L. Graybill; Maria Cichy-Knight; Mehul Patel; Jennifer Gale; Hu Li; Sara H. Thrall; David G. Tew; Francis X. Tavares; Stephen A. Thomson; James E. Weiel; Joyce A. Boucheron; Daphne C. Clancy; Andrea H. Epperly; Pamela L. Golden
A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure-activity relationships, and the discovery of a potent exemplar (IC(50)=80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.
PLOS ONE | 2016
Rebecca J. Hodge; Mark A. Paulik; Ann Walker; Joyce A. Boucheron; Susan L. McMullen; Dawn S. Gillmor; Derek J. Nunez
Background Nutritional agents have modest efficacy in reducing weight and blood glucose in animal models and humans, but combinations are less well characterized. GSK2890457 (GSK457) is a combination of 4 nutritional agents, discovered by the systematic assessment of 16 potential components using the diet-induced obese mouse model, which was subsequently evaluated in a human study. Nonclinical Results In the diet-induced obese mouse model, GSK457 (15% w/w in chow) given with a long-acting glucagon-like peptide -1 receptor agonist, exendin-4 AlbudAb, produced weight loss of 30.8% after 28 days of treatment. In db/db mice, a model of diabetes, GSK457 (10% w/w) combined with the exendin-4 AlbudAb reduced glucose by 217 mg/dL and HbA1c by 1.2% after 14 days. Clinical Results GSK457 was evaluated in a 6 week randomized, placebo-controlled study that enrolled healthy subjects and subjects with type 2 diabetes to investigate changes in weight and glucose. In healthy subjects, GSK457 well tolerated when titrated up to 40 g/day, and it reduced systemic exposure of metformin by ~ 30%. In subjects with diabetes taking liraglutide 1.8 mg/day, GSK457 did not reduce weight, but it slightly decreased mean glucose by 0.356 mmol/L (95% CI: -1.409, 0.698) and HbAlc by 0.065% (95% CI: -0.495, 0.365), compared to placebo. In subjects with diabetes taking metformin, weight increased in the GSK457-treated group [adjusted mean % increase from baseline: 1.26% (95% CI: -0.24, 2.75)], and mean glucose and HbA1c were decreased slightly compared to placebo [adjusted mean glucose change from baseline: -1.22 mmol/L (95% CI: -2.45, 0.01); adjusted mean HbA1c change from baseline: -0.219% (95% CI: -0.910, 0.472)]. Conclusions Our data demonstrate remarkable effects of GSK457 in rodent models of obesity and diabetes, but a marked lack of translation to humans. Caution should be exercised with nutritional agents when predicting human efficacy from rodent models of obesity and diabetes. Trial Registration ClinicalTrials.gov NCT01725126
Cancer Research | 1986
Steven A. Belinsky; Catherine M. White; Joyce A. Boucheron; Frank C. Richardson; James A. Swenberg; Marshall W. Anderson
Journal of Biological Chemistry | 1996
Margrith W. Verghese; Tracy B. Kneisler; Joyce A. Boucheron
Carcinogenesis | 1990
Norbert Fedtke; Joyce A. Boucheron; V.E. Walker; James A. Swenberg
Bioorganic & Medicinal Chemistry Letters | 2004
Andrew J. Peat; Joyce A. Boucheron; Scott Howard Dickerson; Dulce Maria Garrido; Wendy Yoon Mills; Jennifer Poole Peckham; Frank Preugschat; Terrence L. Jr. Smalley; Stephanie L Schweiker; Jayme Lyn Roark Wilson; Tony Y. Wang; Hui-Qiang Q. Zhou; Stephen A. Thomson
Journal of Medicinal Chemistry | 2004
Francis X. Tavares; Joyce A. Boucheron; Scott Howard Dickerson; Robert J. Griffin; Frank Preugschat; Stephen A. Thomson; Tony Y. Wang; Huiqiang Zhou