Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joyce K. James is active.

Publication


Featured researches published by Joyce K. James.


Journal of Medicinal Chemistry | 2009

Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N′-{4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea Dihydrochloride (AC220), a Uniquely Potent, Selective, and Efficacious FMS-Like Tyrosine Kinase-3 (FLT3) Inhibitor

Qi Chao; Kelly G. Sprankle; Robert M. Grotzfeld; Andiliy G. Lai; Todd A. Carter; Anne Marie Velasco; Ruwanthi N. Gunawardane; Merryl Cramer; Michael F. Gardner; Joyce K. James; Patrick Parvis Zarrinkar; Hitesh Patel; Shripad S. Bhagwat

Treatment of AML patients with small molecule inhibitors of FLT3 kinase has been explored as a viable therapy. However, these agents are found to be less than optimal for the treatment of AML because of lack of sufficient potency or suboptimal oral pharmacokinetics (PK) or lack of adequate tolerability at efficacious doses. We have developed a series of extremely potent and highly selective FLT3 inhibitors with good oral PK properties. The first series of compounds represented by 1 (AB530) was found to be a potent and selective FLT3 kinase inhibitor with good PK properties. The aqueous solubility and oral PK properties at higher doses in rodents were found to be less than optimal for clinical development. A novel series of compounds were designed lacking the carboxamide group of 1 with an added water solubilizing group. Compound 7 (AC220) was identified from this series to be the most potent and selective FLT3 inhibitor with good pharmaceutical properties, excellent PK profile, and superior efficacy and tolerability in tumor xenograft models. Compound 7 has demonstrated a desirable safety and PK profile in humans and is currently in phase II clinical trials.


Journal of Medicinal Chemistry | 2012

Identification of 1-(3-(6,7-Dimethoxyquinazolin-4-yloxy)phenyl)-3-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)urea Hydrochloride (CEP-32496), a Highly Potent and Orally Efficacious Inhibitor of V-RAF Murine Sarcoma Viral Oncogene Homologue B1 (BRAF) V600E

Rowbottom Mw; Faraoni R; Qi Chao; Campbell Bt; Andiliy G. Lai; Setti E; Ezawa M; Sprankle Kg; Sunny Abraham; Lan Tran; Struss B; Gibney M; Armstrong Rc; Ruwanthi N. Gunawardane; Nepomuceno Rr; Valenta I; Hua H; Michael F. Gardner; Cramer; Dana Gitnick; Insko De; Julius L. Apuy; Susan Jones-Bolin; Ghose Ak; Herbertz T; Mark A. Ator; Bruce D. Dorsey; Bruce Ruggeri; Michael T. Williams; Shripad S. Bhagwat

The Ras/RAF/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway plays a central role in the regulation of cell growth, differentiation, and survival. Expression of mutant BRAF(V600E) results in constitutive activation of the MAPK pathway, which can lead to uncontrolled cellular growth. Herein, we describe an SAR optimization campaign around a series of quinazoline derived BRAF(V600E) inhibitors. In particular, the bioisosteric replacement of a metabolically sensitive tert-butyl group with fluorinated alkyl moieties is described. This effort led directly to the identification of a clinical candidate, compound 40 (CEP-32496). Compound 40 exhibits high potency against several BRAF(V600E)-dependent cell lines and selective cytotoxicity for tumor cell lines expressing mutant BRAF(V600E) versus those containing wild-type BRAF. Compound 40 also exhibits an excellent PK profile across multiple preclinical species. In addition, significant oral efficacy was observed in a 14-day BRAF(V600E)-dependent human Colo-205 tumor xenograft mouse model, upon dosing at 30 and 100 mg/kg BID.


Molecular Cancer Therapeutics | 2012

CEP-32496: A Novel Orally Active BRAF V600E Inhibitor with Selective Cellular and In Vivo Antitumor Activity

Joyce K. James; Bruce Ruggeri; Robert C. Armstrong; Martin W. Rowbottom; Susan Jones-Bolin; Ruwanthi N. Gunawardane; Pawel Dobrzanski; Michael F. Gardner; Hugh Zhao; Merryl Cramer; Kathryn Hunter; Ronald R. Nepomuceno; Mangeng Cheng; Dana Gitnick; Mehran Yazdanian; Darren E. Insko; Mark A. Ator; Julius L. Apuy; Raffaella Faraoni; Bruce D. Dorsey; Michael T. Williams; Shripad S. Bhagwat; Mark W. Holladay

Mutations in the BRAF gene have been identified in approximately 7% of cancers, including 60% to 70% of melanomas, 29% to 83% of papillary thyroid carcinomas, 4% to 16% colorectal cancers, and a lesser extent in serous ovarian and non–small cell lung cancers. The V600E mutation is found in the vast majority of cases and is an activating mutation, conferring transforming and immortalization potential to cells. CEP-32496 is a potent BRAF inhibitor in an in vitro binding assay for mutated BRAFV600E (Kd BRAFV600E = 14 nmol/L) and in a mitogen-activated protein (MAP)/extracellular signal–regulated (ER) kinase (MEK) phosphorylation (pMEK) inhibition assay in human melanoma (A375) and colorectal cancer (Colo-205) cell lines (IC50 = 78 and 60 nmol/L). In vitro, CEP-32496 has multikinase binding activity at other cancer targets of interest; however, it exhibits selective cellular cytotoxicity for BRAFV600E versus wild-type cells. CEP-32496 is orally bioavailable in multiple preclinical species (>95% in rats, dogs, and monkeys) and has single oral dose pharmacodynamic inhibition (10–55 mg/kg) of both pMEK and pERK in BRAFV600E colon carcinoma xenografts in nude mice. Sustained tumor stasis and regressions are observed with oral administration (30–100 mg/kg twice daily) against BRAFV600E melanoma and colon carcinoma xenografts, with no adverse effects. Little or no epithelial hyperplasia was observed in rodents and primates with prolonged oral administration and sustained exposure. CEP-32496 benchmarks favorably with respect to other kinase inhibitors, including RAF-265 (phase I), sorafenib, (approved), and vemurafenib (PLX4032/RG7204, approved). CEP-32496 represents a novel and pharmacologically active BRAF inhibitor with a favorable side effect profile currently in clinical development. Mol Cancer Ther; 11(4); 930–41. ©2012 AACR.


Journal of Medicinal Chemistry | 2012

Discovery of highly potent and selective pan-Aurora kinase inhibitors with enhanced in vivo antitumor therapeutic index.

Gang Liu; Sunny Abraham; Lan Tran; Troy Vickers; Shimin Xu; Michael J. Hadd; Sheena Quiambao; Mark W. Holladay; Helen Hua; Julia M. Ford Pulido; Ruwanthi N. Gunawardane; Mindy I. Davis; Shawn R. Eichelberger; Julius L. Apuy; Dana Gitnick; Michael F. Gardner; Joyce K. James; Mike A. Breider; Barbara A. Belli; Robert C. Armstrong; Daniel Kelly Treiber

Serine/threonine protein kinases Aurora A, B, and C play essential roles in cell mitosis and cytokinesis. Currently a number of Aurora kinase inhibitors with different isoform selectivities are being evaluated in the clinic. Herein we report the discovery and characterization of 21c (AC014) and 21i (AC081), two structurally novel, potent, kinome-selective pan-Aurora inhibitors. In the human colon cancer cell line HCT-116, both compounds potently inhibit histone H3 phosphorylation and cell proliferation while inducing 8N polyploidy. Both compounds administered intravenously on intermittent schedules displayed potent and durable antitumor activity in a nude rat HCT-116 tumor xenograft model and exhibited good in vivo tolerability. Taken together, these data support further development of both 21c and 21i as potential therapeutic agents for the treatment of solid tumors and hematological malignancies.


ACS Medicinal Chemistry Letters | 2012

Discovery of AC710, a Globally Selective Inhibitor of Platelet-Derived Growth Factor Receptor-Family Kinases

Gang Liu; Brian T. Campbell; Mark W. Holladay; Julia M. Ford Pulido; Helen Hua; Dana Gitnick; Michael F. Gardner; Joyce K. James; Mike A. Breider; Daniel Brigham; Barbara A. Belli; Robert C. Armstrong; Daniel Kelly Treiber

A series of potent, selective platelet-derived growth factor receptor-family kinase inhibitors was optimized starting from a globally selective lead molecule 4 through structural modifications aimed at improving the physiochemical and pharmacokinetic properties, as exemplified by 18b. Further clearance reduction via per-methylation of the α-carbons of a solubilizing piperidine nitrogen resulted in advanced leads 22a and 22b. Results from a mouse tumor xenograft, a collagen-induced arthritis model, and a 7 day rat in vivo tolerability study culminated in the selection of compound 22b (AC710) as a preclinical development candidate.


Drug Metabolism and Disposition | 2005

METABOLISM AND DISPOSITION OF A POTENT GROUP II METABOTROPIC GLUTAMATE RECEPTOR AGONIST, IN RATS, DOGS, AND MONKEYS

Joyce K. James; Masato Nakamura; Atsuro Nakazato; Kanyin E. Zhang; Merryl Cramer; Janice Brunner; Jacquelynn Cook; Weichao G. Chen

Metabolism and disposition of MGS0028 [(1R,2S,5S,6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]hexane-2,6-dicarboxylic acid monohydrate], a potent group II metabotropic glutamate receptor agonist, were examined in three preclinical species (Sprague-Dawley rats, beagle dogs, and rhesus monkeys). In rats, MGS0028 was widely distributed and primarily excreted in urine as parent and as a single reductive metabolite, identified as the 4R-isomer MGS0034 [(1R,2S,4R,5S,6S)-2-amino-6-fluoro-4-hydroxybicyclo[3.1.0]-hexane-2,6-dicarboxylic acid]. MGS0028 had a low brain to plasma ratio at efficacious doses in rats and was eliminated more slowly in rat brain than in plasma. Exposure increased proportionally (1–10 mg/kg p.o.) in rats, with bioavailability >60% at all doses. However, bioavailability was only ∼20% in monkeys, and MGS0034 was found in relatively high abundance in plasma. In dogs, oral bioavailability was >60%, and the metabolite was not detected. In vitro metabolism was examined in liver subcellular fractions (microsomes and cytosol) from rat, dog, monkey, and human. Reductive metabolism was observed in rat, monkey, and human liver cytosol incubations, but not in dog liver cytosol incubations. No metabolism of MGS0028 was detected in incubations with liver microsomes from any species. Similar to in vivo results, MGS0028 was reduced in cytosol stereospecifically to MGS0034. The rank order of in vitro metabolite formation (monkey ≫ rat ∼ human ≫ dog) was in agreement with in vivo observations in rats, dogs, and monkeys. Based on the observation of species difference in reductive metabolism, rat and monkey were recommended to be the preclinical species for further characterization prior to testing in humans. Finally, allometric scaling predicts that human pharmacokinetic parameters would be acceptable for further development.


Bioorganic & Medicinal Chemistry Letters | 2005

Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators.

Anthony B. Pinkerton; Rowena V. Cube; John H. Hutchinson; Joyce K. James; Michael F. Gardner; Blake A. Rowe; Hervé Schaffhauser; Dana E. Rodriguez; Una C. Campbell; Lorrie P. Daggett; Jean-Michel Vernier


Bioorganic & Medicinal Chemistry Letters | 2005

Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): efficacy in an animal model for schizophrenia.

Steven P. Govek; Celine Bonnefous; John H. Hutchinson; Theodore M. Kamenecka; Jeffrey McQuiston; Richard Pracitto; Lucy Zhao; Michael F. Gardner; Joyce K. James; Lorrie P. Daggett; Blake A. Rowe; Hervé Schaffhauser; Linda J. Bristow; Una C. Campbell; Dana E. Rodriguez; Jean-Michel Vernier


Bioorganic & Medicinal Chemistry Letters | 2005

Biphenyl-indanones: allosteric potentiators of the metabotropic glutamate subtype 2 receptor.

Celine Bonnefous; Jean-Michel Vernier; John H. Hutchinson; Michael F. Gardner; Merryl Cramer; Joyce K. James; Blake A. Rowe; Lorrie P. Daggett; Hervé Schaffhauser; Theodore M. Kamenecka


Bioorganic & Medicinal Chemistry Letters | 2005

3-(2-Ethoxy-4-{4-[3-hydroxy-2-methyl-4-(3-methylbutanoyl)phenoxy]butoxy}phenyl)propanoic acid: a brain penetrant allosteric potentiator at the metabotropic glutamate receptor 2 (mGluR2)

Rowena V. Cube; Jean-Michel Vernier; John H. Hutchinson; Michael F. Gardner; Joyce K. James; Blake A. Rowe; Hervé Schaffhauser; Lorrie P. Daggett; Anthony B. Pinkerton

Collaboration


Dive into the Joyce K. James's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge