Jozef Hritz
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jozef Hritz.
Nature Communications | 2013
In-Ja L. Byeon; Jinwoo Ahn; Mithun Mitra; Chang-Hyeock Byeon; Kamil Hercík; Jozef Hritz; Lisa M. Charlton; Judith G. Levin; Angela M. Gronenborn
Human APOBEC3A (A3A) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts viral pathogens and endogenous retrotransposons and plays a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of A3A’s deaminase and nucleic acid binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here, we report the NMR solution structure of A3A and show that the critical interface for interaction with ssDNA substrates includes residues extending beyond the catalytic center. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on A3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5′ of the reactive C. Our results afford novel mechanistic insights into A3A-mediated deamination and provide the structural basis for further molecular studies.
Journal of Medicinal Chemistry | 2008
Jozef Hritz; Anita de Ruiter; Chris Oostenbrink
Cytochrome P450s (CYPs) exhibit a large plasticity and flexibility in the active site allowing for the binding of a large variety of substrates. The impact of plasticity and flexibility on ligand binding is investigated by docking 65 known CYP2D6 substrates to an ensemble of 2500 protein structures. The ensemble was generated by molecular dynamics simulations of CYP2D6 in complex with five representative substrates. The effect of induced fit, the conformation of Phe483, and thermal motion on the accuracy of site of metabolism (SOM) predictions is analyzed. For future predictions, the three most essential CYP2D6 structures were selected which are suitable for different kinds of ligands. We have developed a binary decision tree to decide which protein structure to dock the ligand into, such that each ligand needs to be docked only once, leading to successful SOM prediction in 80% of the substrates.
Journal of Chemical Information and Modeling | 2009
Poongavanam Vasanthanathan; Jozef Hritz; Olivier Taboureau; Lars Olsen; Flemming Steen Jørgensen; Nico P. E. Vermeulen; Chris Oostenbrink
With the availability of an increasing number of high resolution 3D structures of human cytochrome P450 enzymes, structure-based modeling tools are more readily used. In this study we explore the possibilities of using docking and scoring experiments on cytochrome P450 1A2. Three different questions have been addressed: 1. Binding orientations and conformations were successfully predicted for various substrates. 2. A virtual screen was performed with satisfying enrichment rates. 3. A classification of individual compounds into active and inactive was performed. It was found that while docking can be used successfully to address the first two questions, it seems to be more difficult to perform the classification. Different scoring functions were included, and the well-characterized water molecule in the active site was included in various ways. Results are compared to experimental data and earlier classification data using machine learning methods. The possibilities and limitations of using structure-based drug design tools for cytochrome P450 1A2 come to light and are discussed.
Journal of Chemical Information and Modeling | 2010
Rita Santos; Jozef Hritz; Chris Oostenbrink
Active-site water molecules form an important component in biological systems, facilitating promiscuous binding or an increase in specificity and affinity. Taking water molecules into account in computational approaches to drug design or site-of-metabolism predictions is currently far from straightforward. In this study, the effects of including water molecules in molecular docking simulations of the important metabolic enzyme cytochrome P450 2D6 are investigated. The structure and dynamics of water molecules that are present in the active site simultaneously with a selected substrate are described, and based on this description, water molecules are selected to be included in docking experiments into multiple protein conformations. Apart from the parent substrate, 11 similar and 53 dissimilar substrates are included to investigate the transferability of active-site hydration sites between substrates. The role of water molecules appears to be highly dependent on the protein conformation and the substrate.
Biochemistry | 2009
Gabriel Zoldák; Tobias Aumüller; Christian Lücke; Jozef Hritz; Chris Oostenbrink; Gunter Fischer; Franz X. Schmid
To fully explore the substrate specificities of prolyl isomerases, we synthesized a library of 20 tetrapeptides that are labeled with a 2-aminobenzoyl (Abz) group at the amino terminus and a p-nitroanilide (pNA) group at the carboxy terminus. In this peptide library of the general formula Abz-Ala-Xaa-Pro-Phe-pNA, the position Xaa before the proline is occupied by all 20 proteinogenic amino acids. A conformational analysis of the peptide by molecular dynamics simulations and by NMR spectroscopy showed that the mutual distance between the Abz and pNA moieties in the peptides depends on the isomeric state of the Xaa-Pro bond. In the cis, but not in the trans form, there are significant chemical shift changes of the Abz and pNA moieties, because their aromatic rings are close to each other. This proximity also leads to a strong quenching of Abz fluorescence, which, in combination with a solvent jump, was used to devise a sensitive assay for prolyl isomerases. Unlike the traditional assay, it is not coupled with peptide proteolysis and thus can be employed for protease-sensitive prolyl isomerases as well. The peptide library was used to provide a complete set of P1-site specificities for prototypic human members of the three prolyl isomerase families, FKBP12, cyclophilin 18, and parvulin 14. In a second application, the substrate specificity of SlyD, a protease-sensitive prolyl isomerase from Escherichia coli, was characterized and compared with that of human FKBP12 as well as with homologues from other bacteria.
Journal of Chemical Physics | 2008
Jozef Hritz; Chris Oostenbrink
To overcome the problem of insufficient conformational sampling within biomolecular simulations, we have developed a novel Hamiltonian replica exchange molecular dynamics (H-REMD) scheme that uses soft-core interactions between those parts of the system that contribute most to high energy barriers. The advantage of this approach over other H-REMD schemes is the possibility to use a relatively small number of replicas with locally larger differences between the individual Hamiltonians. Because soft-core potentials are almost the same as regular ones at longer distances, most of the interactions between atoms of perturbed parts will only be slightly changed. Rather, the strong repulsion between atoms that are close in space, which in many cases results in high energy barriers, is weakened within higher replicas of our proposed scheme. In addition to the soft-core interactions, we proposed to include multiple replicas using the same Hamiltonian/level of softness. We have tested the new protocol on the GTP and 8-Br-GTP molecules, which are known to have high energy barriers between the anti and syn conformation of the base with respect to the sugar moiety. During two 25 ns MD simulations of both systems the transition from the more stable to the less stable (but still experimentally observed) conformation is not seen at all. Also temperature REMD over 50 replicas for 1 ns did not show any transition at room temperature. On the other hand, more than 20 of such transitions are observed in H-REMD using six replicas (at three different Hamiltonians) during 6.8 ns per replica for GTP and 12 replicas (at six different Hamiltonians) during 8.7 ns per replica for 8-Br-GTP. The large increase in sampling efficiency was obtained from an optimized H-REMD scheme involving soft-core potentials, with multiple simulations using the same level of softness. The optimization of the scheme was performed by fast mimicking [J. Hritz and C. Oostenbrink, J. Chem. Phys. 127, 204104 (2007)].
Proceedings of the National Academy of Sciences of the United States of America | 2014
Vivian Wai Yan Lui; Noah D. Peyser; Patrick Kwok Shing Ng; Jozef Hritz; Yan Zeng; Yiling Lu; Hua Li; Lin Wang; Breean R. Gilbert; Ignacio J. General; Ivet Bahar; Zhenlin Ju; Zhenghe Wang; Kelsey P. Pendleton; Xiao Xiao; Yu Du; John K. Vries; Peter S. Hammerman; Levi A. Garraway; Gordon B. Mills; Daniel E. Johnson; Jennifer R. Grandis
Significance Most cancers are characterized by increased STAT3 activation where phosphorylated STAT3 levels are associated with reduced survival. The molecular mechanisms underlying aberrant STAT3 phosphorylation/activation in human malignancies have been elusive. Our findings provide a mechanistic basis for tumor-specific STAT3 hyperactivation in head and neck squamous cell carcinoma (HNSCC). We demonstrate that receptor-like protein tyrosine phosphatases, encoded by PTPR genes, including PTPRT, are commonly mutated in HNSCC where PTPR mutations are associated with increased phosphorylation of STAT3 in tumors. Several cancer-related PTPRT mutations localize to the substrate interaction surface of the enzyme catalytic domains. Expression of mutated PTPRT in HNSCC models markedly increases STAT3 activation, promoting cellular survival. PTPRT mutations may therefore serve as predictive biomarkers for STAT3 pathway inhibitors, suggesting new therapeutic opportunities. The underpinnings of STAT3 hyperphosphorylation resulting in enhanced signaling and cancer progression are incompletely understood. Loss-of-function mutations of enzymes that dephosphorylate STAT3, such as receptor protein tyrosine phosphatases, which are encoded by the PTPR gene family, represent a plausible mechanism of STAT3 hyperactivation. We analyzed whole exome sequencing (n = 374) and reverse-phase protein array data (n = 212) from head and neck squamous cell carcinomas (HNSCCs). PTPR mutations are most common and are associated with significantly increased phospho-STAT3 expression in HNSCC tumors. Expression of receptor-like protein tyrosine phosphatase T (PTPRT) mutant proteins induces STAT3 phosphorylation and cell survival, consistent with a “driver” phenotype. Computational modeling reveals functional consequences of PTPRT mutations on phospho-tyrosine–substrate interactions. A high mutation rate (30%) of PTPRs was found in HNSCC and 14 other solid tumors, suggesting that PTPR alterations, in particular PTPRT mutations, may define a subset of patients where STAT3 pathway inhibitors hold particular promise as effective therapeutic agents.
PLOS Neglected Tropical Diseases | 2014
Christina L. Gardner; Jozef Hritz; Chengqun Sun; Dana L. Vanlandingham; Timothy Song; Elodie Ghedin; Stephen Higgs; William B. Klimstra; Kate D. Ryman
Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.
Retrovirology | 2015
Mithun Mitra; Dustin Singer; Yu Mano; Jozef Hritz; Gabriel Nam; Robert J. Gorelick; In-Ja L. Byeon; Angela M. Gronenborn; Yasumasa Iwatani; Judith G. Levin
BackgroundHuman APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays.ResultsWe have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5′ T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (−) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type.ConclusionsThe molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.
Journal of Virology | 2013
Christina L. Gardner; Jo Choi-Nurvitadhi; Chengqun Sun; Avraham Bayer; Jozef Hritz; Kate D. Ryman; William B. Klimstra
ABSTRACT Recently, we compared amino acid sequences of the E2 glycoprotein of natural North American eastern equine encephalitis virus (NA-EEEV) isolates and demonstrated that naturally circulating viruses interact with heparan sulfate (HS) and that this interaction contributes to the extreme neurovirulence of EEEV (C. L. Gardner, G. D. Ebel, K. D. Ryman, and W. B. Klimstra, Proc. Natl. Acad. Sci. U. S. A., 108:16026–16031, 2011). In the current study, we have examined the contribution to HS binding of each of three lysine residues in the E2 71-to-77 region that comprise the primary HS binding site of wild-type (WT) NA-EEEV viruses. We also report that the original sequence comparison identified five virus isolates, each with one of three amino acid differences in the E2 71-to-77 region, including mutations in residues critical for HS binding by the WT virus. The natural variant viruses, which possessed either a mutation from lysine to glutamine at E2 71, a mutation from lysine to threonine at E2 71, or a mutation from threonine to lysine at E2 72, exhibited altered interactions with heparan sulfate and cell surfaces and altered virulence in a mouse model of EEEV disease. An electrostatic map of the EEEV E1/E2 heterotrimer based upon the recent Chikungunya virus crystal structure (J. E. Voss, M. C. Vaney, S. Duquerroy, C. Vonrhein, C. Girard-Blanc, E. Crublet, A. Thompson, G. Bricogne, and F. A. Rey, Nature, 468:709–712, 2010) showed the HS binding site to be at the apical surface of E2, with variants affecting the electrochemical nature of the binding site. Together, these results suggest that natural variation in the EEEV HS binding domain may arise during EEEV sylvatic cycles and that this variation may influence receptor interaction and the severity of EEEV disease.