Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ju-Eun Oh is active.

Publication


Featured researches published by Ju-Eun Oh.


Biomacromolecules | 2008

Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures.

In-Sung Yeo; Ju-Eun Oh; Lim Jeong; Taek Seung Lee; Seung Jin Lee; Won Ho Park; Byung-Moo Min

Electrospinning of collagen (COL)/silk fibroin (SF) blend solutions in 1,1,1,3,3,3-hexafluoro-2-propanol was investigated for fabrication of a biocompatible and biomimetic nanostructured scaffold for tissue engineering. The morphology of the electrospun COL/SF blend nanofibers was observed by scanning electron microscopy. The average diameters of COL/SF blend fibers ranged from 320 to 360 nm, irrespective of SF content in the blends. Both COL and SF components in the as-spun COL/SF blend matrices were stabilized by glutaraldehyde and water vapor, respectively, under the saturated glutaraldehyde aqueous solution at 25 degrees C. The glutaraldehyde vapor chemically stabilized the COL component via cross-linking, whereas the water vapor physically stabilized the SF component via crystallization to the beta-sheet structure. These structural changes of after-treated COL/SF blend matrices were examined using ATR-IR and CP/MAS (13)C NMR spectroscopy. To assay the cytocompatibility and cellular behavior of the COL/SF blend nanofibrous scaffolds, cell attachment and the spreading of normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) seeded on the scaffolds were studied. In addition, both morphological changes and cellular responses of COL/SF blend nanofibrous matrices were also compared with COL/SF hybrid nanofibrous matrices. Generally similar levels of cell attachment and spreading of NHEF were shown in the COL/SF blend nanofibrous matrix compared with those of the pure COL and pure SF matrices; the cellular responses of NHEK were, however, markedly decreased in the COL/SF blend nanofibrous matrix as compared to the pure matrices. In contrast, cell attachment and spreading of NHEK on the COL/SF hybrid nanofibrous matrix were significantly higher than that of the COL/SF blend nanofibrous matrix. Our results indicate that a COL/SF hybrid nanofibrous matrix may be a better candidate than a COL/SF blend nanofibrous matrix for biomedical applications such as wound dressing and scaffolds for tissue engineering.


Journal of Dental Research | 2011

Bisphosphonates Induce Senescence in Normal Human Oral Keratinocytes

Reuben Kim; Rachel S. Lee; Drake W. Williams; Susan Bae; J. Woo; M. Lieberman; Ju-Eun Oh; Qinghua Dong; K.H. Shin; Mo Kang; No-Hee Park

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) commonly occurs in individuals receiving bisphosphonates (BPs) with clinical manifestations of the exposed necrotic bone. Although defective wound healing of soft tissue is frequently, if not always, observed in BRONJ, the effects of BPs on oral soft tissue or cells remain unknown. To investigate the effects of BPs on cells of oral mucosal tissue, we studied the effect of pamidronate (PAM), one of the BPs most commonly administered to cancer patients, on the phenotypes of normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). When exposed to PAM at 10 µM, NHOK, not NHOF, underwent senescence: NHOK overexpressed senescence-associated β-galactosidase (SA-β-Gal), p16INK4A, IL-6, and IL-8. When exposed to a higher level (50 µM) of PAM, NHOK maintained senescent phenotypes, but NHOF underwent apoptosis. PAM-induced senescence in NHOK is mediated, in part, via geranylgeranylation of the mevalonate pathway. Our in vitro 3D oral mucosal tissue construction studies further demonstrated that PAM induced senescence and impaired re-epithelialization of oral mucosa. Analysis of these data indicates that premature senescence of oral mucosal cells and subsequent defective soft-tissue wound healing might be partly responsible for the development of BRONJ in individuals receiving PAM or other BPs.


Infection and Immunity | 2009

Toll-Like Receptor 2 and NALP2 Mediate Induction of Human Beta-Defensins by Fusobacterium nucleatum in Gingival Epithelial Cells

Suk Ji; Ji Eun Shin; Young S. Kim; Ju-Eun Oh; Byung-Moo Min; Youngnim Choi

ABSTRACT We previously reported that infection by Fusobacterium nucleatum strongly induced the expression of both human beta-defensin 2 (HBD-2) and HBD-3 by gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptors (PRRs) and regulatory mechanisms involved in the induction of HBD-2 and -3 expression by F. nucleatum in gingival epithelial cells. Immortalized human gingival epithelial HOK-16B cells were infected with live or heat-killed F. nucleatum, and the expression of HBDs and interleukin-8 (IL-8) was examined by real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, respectively. Live, but not heat-killed, F. nucleatum invaded HOK-16B cells, as seen by confocal microscopy and flow cytometry. Live F. nucleatum induced both HBD-2 and -3 efficiently, whereas heat-killed bacteria induced only HBD-3 at a reduced level. Knockdown of NACHT-LRR- and pyrin domain-containing protein 2 (NALP2), the most abundant intracellular PRR in HOK-16B cells, by RNA interference (RNAi) significantly reduced the induction of HBD-3 but not HBD-2 and IL-8. In addition, knockdown of Toll-like receptor 2 (TLR2) by RNAi reduced the upregulation of HBD-2 and -3 but not IL-8. Heat-killed F. nucleatum was hindered in its ability to activate TLR2 and JNK signaling pathways. Theses data show that TLR2 and NALP2 mediate the induction of HBDs by F. nucleatum in gingival epithelial cells, but thresholds for the two HBD genes are different.


Colloids and Surfaces B: Biointerfaces | 2010

Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles.

Ja Young Chun; Hyun Ki Kang; Lim Jeong; Yun Ok Kang; Ju-Eun Oh; In-Sung Yeo; Sung Youn Jung; Won Ho Park; Byung-Moo Min

A heat-treated PVA nanofibrous matrix containing silver (Ag) was prepared by electrospinning an aqueous 10 wt% PVA solution and followed by heat treatment at 150 degrees C for 10 min. The average diameter of the as-spun and heat-treated PVA nanofibers was 330 nm. The heat-treated PVA nanofibrous matrix containing Ag was irradiated with UV light to transform the Ag ions in the nanofibrous matrix into Ag nanoparticles. The in vitro cytotoxicity of the Ag ions and/or nanoparticles on normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) cultures was examined. The PVA nanofibrous matrix containing Ag showed slightly higher level of attachment and spreading in the early stage culture (1 h) than the PVA nanofibers without Ag (control). However, compared with the PVA nanofibers without Ag, the heat-treated and UV-irradiated PVA nanofibers, containing mainly Ag ions and nanoparticles, respectively, showed reduced cell attachment and spreading. This shows that both Ag ions and Ag nanoparticles are cytotoxic to NHEK and NHEF. There was no significant difference in cytotoxicity to NHEK and NHEF between Ag ions and Ag nanoparticles. NHEF appeared to be more sensitive to Ag ions or particles than NHEK. In addition, the residual nitrate ions (NO3(-)) in the PVA nanofibers had an adverse effect on the culture of both cells.


Journal of Biological Chemistry | 2005

βig-h3 Induces Keratinocyte Differentiation via Modulation of Involucrin and Transglutaminase Expression through the Integrin α3β1 and the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

Ju-Eun Oh; Joong-Ki Kook; Byung-Moo Min

βig-h3 is an extracellular matrix protein whose expression is highly induced by transforming growth factor (TGF)-β1. Whereas βig-h3 is known to mediate keratinocyte adhesion and migration, its effects on keratinocyte differentiation remain unclear. In the present study, it was demonstrated that expression of both βig-h3 and TGF-β1 was enhanced during keratinocyte differentiation and that expression of the former was strongly induced by that of the latter. This study also asked whether changes in β-h3 expression would affect keratinocyte differentiation. Indeed, down-regulation of βig-h3 by transfection with antisense βig-h3 cDNA constructs effectively inhibited keratinocyte differentiation by decreasing the promoter activities and thus expression of involucrin and transglutaminase. The result was a ∼2-fold increase in mitotic capacity of the cells. Conversely, overexpression of βig-h3, either by transfection with βig-h3 expression plasmids or by exposure to recombinant βig-h3, enhanced keratinocyte differentiation by inhibiting cell proliferation and concomitantly increasing involucrin and transglutaminase expression. Recombinant βig-h3 also promoted keratinocyte adhesion through interaction with integrin α3β1. Changes in βig-h3 expression did not affect intracellular calcium levels. Subsequent analysis revealed not only induction of Akt phosphorylation by recombinant βig-h3 but also blockage of Akt phosphorylation by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Taken together, these findings indicate that enhanced βig-h3, induced by enhanced TGF-β during keratinocyte differentiation, provoked cell differentiation by enhancing involucrin and transglutaminase expression through the integrin α3β1 and phosphatidylinositol 3-kinase/Akt signaling pathway. Lastly, it was observed that βig-h3-mediated keratinocyte differentiation was caused by promotion of cell adhesion and not by calcium regulation.


Journal of Biological Chemistry | 2010

Grainyhead-like 2 Enhances the Human Telomerase Reverse Transcriptase Gene Expression by Inhibiting DNA Methylation at the 5′-CpG Island in Normal Human Keratinocytes

Wei Chen; Qinghua Dong; Ki-Hyuk Shin; Reuben H. Kim; Ju-Eun Oh; No-Hee Park; Mo K. Kang

We recently identified Grainyhead-like 2 (GRHL2) as a novel transcription factor that binds to and regulates the activity of the human telomerase reverse transcriptase (hTERT) gene promoter. In this study, we investigated the biological functions of GRHL2 and the molecular mechanism underlying hTERT gene regulation by GRHL2. Retroviral transduction of GRHL2 in normal human keratinocytes (NHK) led to a significant extension of replicative life span, whereas GRHL2 knockdown notably repressed telomerase activity and cell proliferation. Using promoter magnetic precipitation coupled with Western blotting, we confirmed the binding of GRHL2 to the hTERT promoter and mapped the minimal binding region at −53 to −13 of the promoter. Furthermore, mutation analysis revealed the three nucleotides from −21 to −19 to be critical for GRHL2 binding. Because hTERT expression is regulated in part by DNA methylation, we determined the effects of GRHL2 on the methylation status of the hTERT promoter. Senescent NHK exhibited hypermethylation of the CpG island, which occurred with the loss of hTERT expression. On the contrary, the promoter remained hypomethylated in GRHL2-transduced NHK, irrespective of cell proliferation status. Also, knockdown of endogenous GRHL2 led to hypermethylation of the promoter. These results indicate that GRHL2 regulates the hTERT expression through an epigenetic mechanism and controls the cellular life span.


Journal of Biological Chemistry | 2011

ΔNp63α Protein Triggers Epithelial-Mesenchymal Transition and Confers Stem Cell Properties in Normal Human Keratinocytes

Ju-Eun Oh; Reuben H. Kim; Ki-Hyuk Shin; No-Hee Park; Mo K. Kang

Background: ΔNp63α is an isoform of p63 that is predominantly expressed in normal epidermis. Results: Retroviral transduction of ΔNp63α into rapidly proliferating primary human epidermal keratinocytes led to epithelial-mesenchymal transition (EMT) and acquisition of stemlike properties. Conclusion: ΔNp63α regulates EMT in primary human keratinocytes in a TGF-β-dependent manner. Significance: Altering p63 level in NHEK may be a novel method to generate “induced mesenchymal stem cells” with multipotent capacity. p63 is a p53 family protein required for morphogenesis and postnatal regeneration of epithelial tissues. Here we demonstrate that ΔNp63α, a p63 isoform lacking the N-terminal transactivation domain, induces epithelial-mesenchymal transition (EMT) in primary human keratinocytes in a TGF-β-dependent manner. Rapidly proliferating normal human epidermal keratinocytes (NHEK) were infected with retroviral vector expressing ΔNp63α or empty vector and serially subcultured until replicative senescence. No phenotypic changes were observed until the culture reached senescence. Then the ΔNp63α-transduced cells underwent morphological changes resembling mesenchymal cells and acquired the EMT phenotype. Treatment with exogenous TGF-β accelerated EMT in presenescent ΔNp63α-transduced cells, whereas the inhibition of TGF-β signaling reversed the EMT phenotype. TGF-β treatment alone led to growth arrest in control NHEK with no evidence of EMT, indicating that ΔNp63α altered the cellular response to TGF-β treatment. ΔNp63α-transduced cells acquiring EMT gained the ability to be differentiated to osteo-/odontogenic and adipogenic pathways, resembling mesenchymal stem cells. Furthermore, these cells expressed enhanced levels of Nanog and Lin28, which are transcription factors associated with pluripotency. These data indicate that EMT required ΔNp63α transduction and intact TGF-β signaling in NHEK.


Infection and Immunity | 2010

Treponema denticola Suppresses Expression of Human β-Defensin-3 in Gingival Epithelial Cells through Inhibition of the Toll-Like Receptor 2 Axis

Ji Eun Shin; Young S. Kim; Ju-Eun Oh; Byung-Moo Min; Youngnim Choi

ABSTRACT We reported previously that Treponema denticola, one of the periodontal pathogens, suppresses the expression of human β-defensins (HBDs) in human gingival epithelial cells. To identify the mechanisms involved in this suppression, immortalized and normal human gingival epithelial cells were infected with live or heat-killed T. denticola for 24 h, and then the expression of HBDs was examined by real-time RT-PCR. Live T. denticola suppressed the expression of HBD-3 substantially and also suppressed the expression of HBD-1 and HBD-2. However, heat-killed bacteria did not produce a suppressive effect but instead slightly upregulated the levels of HBD-2 and HBD-3. In contrast to live T. denticola, which reduced the activation of mitogen-activated protein kinase (MAPK) and NF-κB within an hour of infection, heat-killed bacteria did not show any inhibitory effect on the MAPK and NF-κB signaling pathways. Knockdown of Toll-like receptor 2 (TLR2) via RNA interference abolished the suppressive effect of T. denticola on the expression of HBD-3. Heat-killed T. denticola but not live bacteria could activate TLR2 in CHO/CD14/TLR2 reporter cells, suggesting that T. denticola contains a heat-labile inhibitor(s) of TLR2 in addition to ligands recognized by TLR2. Indeed, live T. denticola was able to inhibit TLR2 activation by Pam3CSK. In conclusion, T. denticola suppressed the expression of HBD-3 by inhibiting the TLR2 axis in gingival epithelial cells. These results may provide new insight into the pathogenesis of periodontitis caused by T. denticola.


Journal of Investigative Dermatology | 2011

Radioprotective effects of Bmi-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes.

Qinghua Dong; Ju-Eun Oh; Wei Chen; Roy Kim; Reuben H. Kim; Ki-Hyuk Shin; William H. McBride; No-Hee Park; Mo K. Kang

Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radiation (IR). This study investigates the effect of Bmi-1, a polycomb group protein, on radiation-induced senescence response. When exposed to IR, NHK transduced with Bmi-1 (NHK/Bmi-1) showed reduced senescent phenotype and enhanced proliferation compared with control cells (NHK/B0). To investigate the underlying mechanism, we determined the production of reactive oxygen species (ROS), expression of ROS-generating enzymes, and DNA repair activities in cells. ROS level was increased upon irradiation but notably reduced by Bmi-1 transduction. Irradiation led to strong induction of oxidase genes, e.g., Lpo (lactoperoxidase), p22-phox, p47-phox, and Gp91, in NHK/B0 but their expression was almost completely silenced in NHK/Bmi-1. Induction of oxidase genes upon irradiation was linked with loss of trimethylated histone 3 at lysine 27 (H3K27Me3), but NHK/Bmi-1 expressed a higher level of H3K27Me3 compared with NHK/B0. Bmi-1 transduction suppressed IR-associated induction of jumanji domain containing 3 while enhancing the expression of EZH2, thereby preventing the loss of H3K27Me3 in the irradiated cells. Furthermore, NHK/Bmi-1 demonstrated increased repair of IR-induced DNA damage compared with NHK/B0. These results indicate that Bmi-1 elicits radioprotective effects on NHK by mitigating the genotoxicity of IR through epigenetic mechanisms.


Experimental Cell Research | 2010

Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-β signaling

Reuben H. Kim; Mark B. Lieberman; Rachel Lee; Ki-Hyuk Shin; Shebli Mehrazarin; Ju-Eun Oh; No-Hee Park; Mo K. Kang

We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-beta signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-beta signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-beta1 levels, phosphorylation of Smad2/3, and increased expression of p15(INK4B) and p57(KIP2). An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-beta1 induced dephosphorylation of Smad2/3, and diminished the level of p15(INK4B) and p57(KIP2). Moreover, Bmi-1 expression led to the inhibition of TGF-beta-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15(INK4B), and p57(KIP2). In addition, an exposure of senescent NHOK to TGF-beta receptor I kinase inhibitor or anti-TGF-beta antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-beta signaling pathway in NHOK.

Collaboration


Dive into the Ju-Eun Oh's collaboration.

Top Co-Authors

Avatar

No-Hee Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Ki-Hyuk Shin

University of California

View shared research outputs
Top Co-Authors

Avatar

Mo K. Kang

University of California

View shared research outputs
Top Co-Authors

Avatar

Byung-Moo Min

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Reuben H. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Qinghua Dong

University of California

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Won Ho Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge