Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reuben H. Kim is active.

Publication


Featured researches published by Reuben H. Kim.


Oncogene | 2009

Regulation of the hTERT promoter activity by MSH2, the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells

Xuedong Kang; Wei Chen; Reuben H. Kim; Mo K. Kang; No-Hee Park

Higher expression of human telomerase reverse transcriptase (hTERT) and subsequent activation of telomerase occur during cellular immortalization and are maintained in cancer cells. To understand the mode of hTERT expression in cancer cells, we identified cancer-specific trans-regulatory proteins that interact with the hTERT promoter, using the promoter magnetic precipitation assay coupled with mass spectrometry. The identified proteins include MutS homolog 2 (MSH2), heterogeneous nuclear ribonucleoprotein (hnRNP) D, hnRNP K and grainyhead-like 2 (GRHL2). We noticed a higher expression of these proteins in human oral squamous cell carcinoma (OSCC) cells than in normal cells, which do not exhibit telomerase activity. Knockdown of MSH2, hnRNP D and GRHL2 resulted in a notable reduction of the hTERT promoter activity in tested cancer cells. Silencing of the above genes resulted in a significant reduction of the telomerase activity in OSCC cells. Interestingly, among the four identified genes, silencing of GRHL2 was essential in reducing telomerase activity and viability of tested cancer cells. These results suggest a possible role of GRHL2 in telomerase activation during cellular immortalization.


Journal of Biological Chemistry | 2010

Grainyhead-like 2 Enhances the Human Telomerase Reverse Transcriptase Gene Expression by Inhibiting DNA Methylation at the 5′-CpG Island in Normal Human Keratinocytes

Wei Chen; Qinghua Dong; Ki-Hyuk Shin; Reuben H. Kim; Ju-Eun Oh; No-Hee Park; Mo K. Kang

We recently identified Grainyhead-like 2 (GRHL2) as a novel transcription factor that binds to and regulates the activity of the human telomerase reverse transcriptase (hTERT) gene promoter. In this study, we investigated the biological functions of GRHL2 and the molecular mechanism underlying hTERT gene regulation by GRHL2. Retroviral transduction of GRHL2 in normal human keratinocytes (NHK) led to a significant extension of replicative life span, whereas GRHL2 knockdown notably repressed telomerase activity and cell proliferation. Using promoter magnetic precipitation coupled with Western blotting, we confirmed the binding of GRHL2 to the hTERT promoter and mapped the minimal binding region at −53 to −13 of the promoter. Furthermore, mutation analysis revealed the three nucleotides from −21 to −19 to be critical for GRHL2 binding. Because hTERT expression is regulated in part by DNA methylation, we determined the effects of GRHL2 on the methylation status of the hTERT promoter. Senescent NHK exhibited hypermethylation of the CpG island, which occurred with the loss of hTERT expression. On the contrary, the promoter remained hypomethylated in GRHL2-transduced NHK, irrespective of cell proliferation status. Also, knockdown of endogenous GRHL2 led to hypermethylation of the promoter. These results indicate that GRHL2 regulates the hTERT expression through an epigenetic mechanism and controls the cellular life span.


Biochemical and Biophysical Research Communications | 2012

TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.

Sung Hee Lee; Hannah S. Hong; Zi Xiao Liu; Reuben H. Kim; Mo K. Kang; No-Hee Park; Ki-Hyuk Shin

Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.


Journal of Biological Chemistry | 2011

ΔNp63α Protein Triggers Epithelial-Mesenchymal Transition and Confers Stem Cell Properties in Normal Human Keratinocytes

Ju-Eun Oh; Reuben H. Kim; Ki-Hyuk Shin; No-Hee Park; Mo K. Kang

Background: ΔNp63α is an isoform of p63 that is predominantly expressed in normal epidermis. Results: Retroviral transduction of ΔNp63α into rapidly proliferating primary human epidermal keratinocytes led to epithelial-mesenchymal transition (EMT) and acquisition of stemlike properties. Conclusion: ΔNp63α regulates EMT in primary human keratinocytes in a TGF-β-dependent manner. Significance: Altering p63 level in NHEK may be a novel method to generate “induced mesenchymal stem cells” with multipotent capacity. p63 is a p53 family protein required for morphogenesis and postnatal regeneration of epithelial tissues. Here we demonstrate that ΔNp63α, a p63 isoform lacking the N-terminal transactivation domain, induces epithelial-mesenchymal transition (EMT) in primary human keratinocytes in a TGF-β-dependent manner. Rapidly proliferating normal human epidermal keratinocytes (NHEK) were infected with retroviral vector expressing ΔNp63α or empty vector and serially subcultured until replicative senescence. No phenotypic changes were observed until the culture reached senescence. Then the ΔNp63α-transduced cells underwent morphological changes resembling mesenchymal cells and acquired the EMT phenotype. Treatment with exogenous TGF-β accelerated EMT in presenescent ΔNp63α-transduced cells, whereas the inhibition of TGF-β signaling reversed the EMT phenotype. TGF-β treatment alone led to growth arrest in control NHEK with no evidence of EMT, indicating that ΔNp63α altered the cellular response to TGF-β treatment. ΔNp63α-transduced cells acquiring EMT gained the ability to be differentiated to osteo-/odontogenic and adipogenic pathways, resembling mesenchymal stem cells. Furthermore, these cells expressed enhanced levels of Nanog and Lin28, which are transcription factors associated with pluripotency. These data indicate that EMT required ΔNp63α transduction and intact TGF-β signaling in NHEK.


Cell Death and Disease | 2012

Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism.

Wei Chen; Z Xiao Liu; J-E Oh; Kh Shin; Reuben H. Kim; M Jiang; Nh Park; Mo K. Kang

We recently identified Grainyhead-like 2 (GRHL2), a mammalian homolog of Grainyhead in Drosophila, to be a novel transcription factor that regulates hTERT gene expression and enhances proliferation of normal human epidermal keratinocytes (NHEK). In the current study, we show that GRHL2 impairs keratinocyte differentiation through transcriptional inhibition of the genes clustered at the epidermal differentiation complex (EDC), located at chromosome 1q21. Gene expression profiling and subsequent in vitro assays revealed consistent downregulation of EDC genes, for example, IVL, KRT1, FLG, LCEs, and SPRRs, in NHEK expressing exogenous GRHL2. In vivo binding assay by chromatin immunoprecipitation revealed GRHL2 association at the promoter regions of its target genes, many of which belong to EDC. Exogenous GRHL2 expression also inhibited recruitment of histone demethylase Jmjd3 to the EDC gene promoters and enhanced the level of histone 3 Lys 27 trimethylation enrichment at these promoters. Survey of GRHL2 expression in human skin tissues demonstrated enhanced protein and mRNA levels in chronic skin lesions with impaired keratinocyte differentiation, for example, atopic dermatitis and psoriasis, compared with normal epidermis. These data indicate that GRHL2 impairs epidermal differentiation by inhibiting EDC gene expression through epigenetic mechanisms and support its role in the hyperproliferative skin diseases.


Journal of Endodontics | 2011

Impaired odontogenic differentiation of senescent dental mesenchymal stem cells is associated with loss of Bmi-1 expression.

Shebli Mehrazarin; Ju Eun Oh; Christine Chung; Wei Chen; Reuben H. Kim; Songtao Shi; No-Hee Park; Mo K. Kang

INTRODUCTION Dental mesenchymal stem cells (dMSCs) might differentiate into odontoblast-like cells and form mineralized nodules. In the current study, we investigated the effects of senescence on odontogenic differentiation of dMSCs. METHODS dMSCs were serially subcultured until senescence. Telomere lengths and telomerase activities were determined by quantitative polymerase chain reaction. Expression of genes involved in cell proliferation and differentiation, eg, Bmi-1, p16(INK4A), osteocalcin (OC), dentin sialoprotein (DSP), bone sialoprotein (BSP), and dentin matrix protein-1 (DMP-1) were assayed by Western blotting and quantitative reverse transcription polymerase chain reaction. Exogenous Bmi-1 was expressed in dMSCs by using retroviral vectors. Odontogenic differentiation was assayed by alkaline phosphatase activity. RESULTS Subculture-induced replicative senescence of dMSCs led to reduced expression of Bmi-1, OC, DSP, and BSP compared with rapidly proliferating cells, whereas p16(INK4A) level increased. The cells exhibited progressive loss of telomeric DNA during subculture, presumably as a result of lack of telomerase activity. Bmi-1 transduction did not affect proliferation of cells but enhanced the expression of OC and DSP in the late passage cultures. Bmi-1-transduced cells also demonstrated enhanced alkaline phosphatase activity and mineralized nodule formation. CONCLUSIONS These results indicate that dMSCs lose their odontogenic differentiation potential during senescence, in part by reduced Bmi-1 expression.


Clinical Cancer Research | 2006

Heterogeneous Nuclear Ribonucleoprotein G Shows Tumor Suppressive Effect against Oral Squamous Cell Carcinoma Cells

Ki-Hyuk Shin; Mo K. Kang; Reuben H. Kim; Russell E. Christensen; No-Hee Park

Purpose: Heterogeneous nuclear ribonucleoproteins (hnRNP) are nucleic acid binding proteins involved in RNA processing. We found that hnRNP G is expressed in normal human oral epithelial cells while frequently not found in the cells derived from human oral squamous cell carcinomas (HOSCC). The current study was designed to test the hypothesis that hnRNP G is a tumor suppressor. Experimental Design: We investigated the expression levels of hnRNP G protein in normal, precancerous, and malignant oral tissues by in situ immunohistochemistry. In addition, wild-type or mutant hnRNP G was ectopically overexpressed in HOSCC cells and their effects on cellular replication kinetics, colonogenic efficiency, anchorage-independent growth, and in vivo tumorigenicity were determined. Results:In situ immunohistochemical staining showed robust presence of hnRNP G in the basal cell layers of normal oral epithelium but the level of its staining was markedly reduced in dysplastic or cancerous tissues. Ectopic expression of wild-type hnRNP G in cancer cells lacking hnRNP G expression or containing mutant hnRNP G resulted in severe retardation of proliferation, reduction of colonogenic efficiency, loss of anchorage-independent growth, and reduction of in vivo tumorigenicity in immunocompromised mice. In addition, hnRNP G overexpression led to up-regulation of the expression of TXNIP, a cell cycle inhibitory gene, and significantly reduced the expression of the genes that promote cellular proliferation, such as EGR1, JUND, JUNB, FOS, FOSL1, ROS, and KIT. Conclusions: These results indicate that hnRNP G is a tumor suppressor against HOSCC but its mechanisms of action remain to be further investigated.


Journal of Investigative Dermatology | 2011

Radioprotective effects of Bmi-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes.

Qinghua Dong; Ju-Eun Oh; Wei Chen; Roy Kim; Reuben H. Kim; Ki-Hyuk Shin; William H. McBride; No-Hee Park; Mo K. Kang

Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radiation (IR). This study investigates the effect of Bmi-1, a polycomb group protein, on radiation-induced senescence response. When exposed to IR, NHK transduced with Bmi-1 (NHK/Bmi-1) showed reduced senescent phenotype and enhanced proliferation compared with control cells (NHK/B0). To investigate the underlying mechanism, we determined the production of reactive oxygen species (ROS), expression of ROS-generating enzymes, and DNA repair activities in cells. ROS level was increased upon irradiation but notably reduced by Bmi-1 transduction. Irradiation led to strong induction of oxidase genes, e.g., Lpo (lactoperoxidase), p22-phox, p47-phox, and Gp91, in NHK/B0 but their expression was almost completely silenced in NHK/Bmi-1. Induction of oxidase genes upon irradiation was linked with loss of trimethylated histone 3 at lysine 27 (H3K27Me3), but NHK/Bmi-1 expressed a higher level of H3K27Me3 compared with NHK/B0. Bmi-1 transduction suppressed IR-associated induction of jumanji domain containing 3 while enhancing the expression of EZH2, thereby preventing the loss of H3K27Me3 in the irradiated cells. Furthermore, NHK/Bmi-1 demonstrated increased repair of IR-induced DNA damage compared with NHK/B0. These results indicate that Bmi-1 elicits radioprotective effects on NHK by mitigating the genotoxicity of IR through epigenetic mechanisms.


Experimental Cell Research | 2010

Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-β signaling

Reuben H. Kim; Mark B. Lieberman; Rachel Lee; Ki-Hyuk Shin; Shebli Mehrazarin; Ju-Eun Oh; No-Hee Park; Mo K. Kang

We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-beta signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-beta signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-beta1 levels, phosphorylation of Smad2/3, and increased expression of p15(INK4B) and p57(KIP2). An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-beta1 induced dephosphorylation of Smad2/3, and diminished the level of p15(INK4B) and p57(KIP2). Moreover, Bmi-1 expression led to the inhibition of TGF-beta-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15(INK4B), and p57(KIP2). In addition, an exposure of senescent NHOK to TGF-beta receptor I kinase inhibitor or anti-TGF-beta antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-beta signaling pathway in NHOK.


Carcinogenesis | 2008

Association of hsp90 to the hTERT promoter is necessary for hTERT expression in human oral cancer cells

Reuben H. Kim; Roy Kim; Wei Chen; Shen Hu; Ki-Hyuk Shin; No-Hee Park; Mo K. Kang

Enhanced expression of human telomerase reverse transcriptase (hTERT) occurs frequently during cellular immortalization. The current study was undertaken to determine the mechanism regulating the hTERT promoter activity during cellular immortalization of human oral keratinocytes. Normal human oral keratinocytes (NHOKs) were immortalized with Bmi-1 and the E6 oncoprotein of human papillomavirus type 16 to establish the telomerase-positive HOK-Bmi-1/E6 cell line. Using DNA-protein-binding assay, we found that heat shock protein 90 (hsp90) physically interacts with the hTERT promoter in vitro. The hsp90 interaction with the promoter was detected more strongly in the telomerase-positive HOK-Bmi-1/E6 cells compared with that in senescing NHOK. Chromatin immunoprecipitation confirmed the in vivo interaction between hsp90 and the hTERT promoter in SCC4 cells, a telomerase-positive oral cancer cell line, but not in the NHOK. To determine the physiological significance of this interaction, SCC4 cells were exposed to geldanamycin (GA), a competitive inhibitor of hsp90. GA exposure led to decrease in telomerase activity, hTERT promoter activity and hTERT messenger RNA expression in SCC4 cells, even in the absence of de novo protein synthesis. Also, it abolished the in vivo interaction of the hTERT promoter region with hsp90 but not with Sp1 or c-Myc. These results indicate that physical interaction between hsp90 and the hTERT promoter occurs in telomerase-positive cells but not in normal human cells and is necessary for the enhanced hTERT expression and telomerase activity in cancer cells.

Collaboration


Dive into the Reuben H. Kim's collaboration.

Top Co-Authors

Avatar

No-Hee Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Mo K. Kang

University of California

View shared research outputs
Top Co-Authors

Avatar

Ki-Hyuk Shin

University of California

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Ju-Eun Oh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terresa Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Sung Hee Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Minju Song

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge