Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ju Zhang is active.

Publication


Featured researches published by Ju Zhang.


PLOS ONE | 2014

A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

Kedong Xu; Xiaohui Huang; Manman Wu; Yan-Yan Wang; Yunxia Chang; Kun Liu; Ju Zhang; Yi Zhang; Fuli Zhang; Liming Yi; Tingting Li; Ruiyue Wang; Guangxuan Tan; Chengwei Li

Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.


Frontiers in Plant Science | 2015

Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing

Guangxuan Tan; Kun Liu; Jingmin Kang; Kedong Xu; Yi Zhang; Lizong Hu; Ju Zhang; Chengwei Li

Tomato Verticillium wilt is a soil-borne vascular disease caused by the necrotrophic fungus Verticillium dahliae. Although some understanding of plant defense mechanisms against V. dahliae infection has been gained for incompatible interactions, including identification of inducible resistant genes and defense signaling pathways, the genes and signaling pathways involved in the compatible interaction remain unclear. To investigate the molecular basis of the compatible interaction between tomato and V. dahliae, transcriptomes of V. dahliae infected tomatoes were compared to those of a control group. A total of approximately 25 million high-quality reads were generated by means of the RNA sequencing (RNA-seq) method. The sequence reads were aligned to the tomato reference genome and analyzed to measure gene expression levels, and to identify alternative splicing events. Comparative analysis between the two samples revealed 1,953 significantly differentially expressed genes (DEGs), including 1,281 up-regulated and 672 down-regulated genes. The RNA-Seq output was confirmed using RT-qPCR for 10 selected genes. The Nr, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate DEG functions. Of the 1,953 DEGs identified, 1,953, 1,579, 1,739, 862, and 380 were assigned by Nr, Swiss-Prot, GO, COG, and KEGG, respectively. The important functional groups identified via GO and COG enrichment were those responsible for fundamental biological regulation, secondary metabolism, and signal transduction. Of DEGs assigned to 87 KEGG pathways, most were associated with phenylpropanoid metabolism and plant–pathogen interaction pathways. Most of the DEGs involved in these two pathways were up-regulated, and may be involved in regulating the tomato-V. dahliae compatible interaction. The results will help to identify key susceptible genes and contribute to a better understanding of the mechanisms of tomato susceptible response to V. dahliae.


PLOS ONE | 2014

Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure.

Kedong Xu; Yunxia Chang; Kun Liu; Feige Wang; Zhongyuan Liu; Ting Zhang; Tong Li; Yi Zhang; Fuli Zhang; Ju Zhang; Yan Wang; Wei Niu; Shuzhao Jia; Hengchang Xie; Guangxuan Tan; Chengwei Li

A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.


Frontiers in Plant Science | 2017

JcDREB2, a Physic Nut AP2/ERF Gene, Alters Plant Growth and Salinity Stress Responses in Transgenic Rice

Yuehui Tang; Kun Liu; Ju Zhang; Xiaoli Li; Kedong Xu; Yi Zhang; Jing Qi; Deshui Yu; Jian Wang; Chengwei Li

Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2, was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient expression of a JcDREB2-YFP fusion protein in Arabidopsis protoplasts cells suggested that JcDREB2 is localized in the nucleus. Rice plants overexpressing JcDREB2 exhibited dwarf and GA-deficient phenotypes with shorter shoots and roots than those of wild-type plants. The dwarfism phenotype could be rescued by the application of exogenous GA3. The expression levels of GA biosynthetic genes including OsGA20ox1, OsGA20ox2, OsGA20ox4, OsGA3ox2, OsCPS1, OsKO2, and OsKAO were significantly reduced in plants overexpressing JcDREB2. Overexpression of JcDREB2 in rice increased sensitivity to salt stress. Increases in the expression levels of several salt-tolerance-related genes in response to salt stress were impaired in JcDREB2-overexpressing plants. These results demonstrated not only that JcDREB2 influences GA metabolism, but also that it can participate in the regulation of the salt stress response in rice.


Scientific Reports | 2015

A Lower pH Value Benefits Regeneration of Trichosanthes kirilowii by Somatic Embryogenesis, Involving Rhizoid Tubers (RTBs), a Novel Structure

Kedong Xu; Yunxia Chang; Ju Zhang; Pei-long Wang; Jianxin Wu; Yan-yan Li; Xiao-wen Wang; Wei Wang; Kun Liu; Yi Zhang; Deshui Yu; Libing Liao; Yi Zhi Li; Shuya Ma; Guangxuan Tan; Chengwei Li

A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids.


Frontiers in Plant Science | 2017

Vacuum and Co-cultivation Agroinfiltration of (Germinated) Seeds Results in Tobacco Rattle Virus (TRV) Mediated Whole-Plant Virus-Induced Gene Silencing (VIGS) in Wheat and Maize

Ju Zhang; Deshui Yu; Yi Zhang; Kun Liu; Kedong Xu; Fuli Zhang; Jian Wang; Guangxuan Tan; Xianhui Nie; Qiaohua Ji; Lu Zhao; Chengwei Li

Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) has been frequently used in dicots. Here we show that it can also be used in monocots, by presenting a system involving use of a novel infiltration solution (containing acetosyringone, cysteine, and Tween 20) that enables whole-plant level VIGS of (germinated) seeds in wheat and maize. Using the established system, phytoene desaturase (PDS) genes were successfully silenced, resulting in typical photo-bleaching symptoms in the leaves of treated wheat and maize. In addition, three wheat homoeoalleles of MLO, a key gene repressing defense responses to powdery mildew in wheat, were simultaneously silenced in susceptible wheat with this system, resulting in it becoming resistant to powdery mildew. The system has the advantages generally associated with TRV-mediated VIGS systems (e.g., high-efficiency, mild virus infection symptoms, and effectiveness in different organs). However, it also has the following further advantages: (germinated) seed-stage agroinfiltration; greater rapidity and convenience; whole-plant level gene silencing; adequately stable transformation; and suitability for studying functions of genes involved in seed germination and early plant development stages.


Scientific Reports | 2016

Rorippa indica Regeneration via Somatic Embryogenesis Involving Frog Egg-like Bodies Efficiently Induced by the Synergy of Salt and Drought Stresses.

Kedong Xu; Yunxia Chang; Yi Zhang; Kun Liu; Ju Zhang; Wei Wang; Zhanshuai Li; Jianxin Wu; Shuya Ma; Yuexing Xin; Chunjing Li; Qianbei Zhou; Hanhan Qiu; Yumei Pi; Youwei Wang; Guangxuan Tan; Chengwei Li

Frog egg-like bodies (FELBs), novel somatic embryogenesis (SE) structures first observed in Solanum nigrum, were induced in Rorippa indica. NaCl-mediated salt and mannitol-mimicked drought stresses induced FELBs in R. indica, which is very different from the induction by plant growth regulators (PGRs) under low light condition that was used in S. nigrum FELB induction. It demonstrated that NaCl or mannitol supplements alone could induce FELBs in R. indica, but with low induction rates, while the synergy of NaCl and mannitol significantly increased the FELB induction rates. For the combination of 5.0 g/L mannitol and 10.0 g/L NaCl the highest FELB induction rate (100%) was achieved. It suggests that the synergy of drought and salt stresses can replace PGRs to induce FELBs in R. indica. On medium supplemented with 1.0 mg/L gibberellic acid all the inoculated in vitro FELBs developed into multiple plantlets. Morphological and histological analyses confirmed the identity of FELBs induced in R. indica and revealed that FELBs originate from root cortex cells.


Plasmid | 2018

Development of a Gateway-compatible pCAMBIA binary vector for RNAi-mediated gene knockdown in plants

Deshui Yu; Libing Liao; Yi Zhang; Kedong Xu; Ju Zhang; Kun Liu; Xiaoli Li; Guangxuan Tan; Jurui Zheng; Yong He; Changling Xu; Jinjin Zhao; Beibei Fu; Jiaxing Xie; Jie Mao; Chengwei Li

RNA interference (RNAi), based on hairpin RNA (hpRNA) expression, plays an important role in functional analysis of plant genes. Traditional methods for making RNAi constructs usually involve multiple time-consuming cloning steps. We have developed a Gateway-compatible binary vector for RNAi-mediated gene knockdown in plants from pCAMBIA2301 and pHANNIBAL vectors. The new plant RNAi binary vector, named pCAMBIA2301-GW-RNAi, has two inverted repeated Gateway cassettes driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter. This enables site-specific recombination at two sites by one Gateway LR reaction without restriction enzymes and ligases. The pCAMBIA2301-GW-RNAi vectors effectiveness was evaluated by Agrobacterium-mediated transient co-expression assays of overexpression and silencing constructs of HvCEBiP in Nicotiana benthamiana followed by western blot analysis. Obtained results show that the developed RNAi vector successfully knocked down 35S-driven expression of HvCEBiP, as expression levels of the encoded HvCEBiP protein were significantly reduced.


Plant Cell Tissue and Organ Culture | 2018

Overexpression of RcFUSCA3, a B3 transcription factor from the PLB in Rosa canina, activates starch accumulation and induces male sterility in Arabidopsis

Kedong Xu; Ju Zhang; Jianxin Wu; Wei Wang; Jiaxing Wang; Piaoxue Liu; Lihong Kuang; Qianmei Liu; Minyue Zhan; Chengwei Li; Liangjun Zhao

A homologue of the Arabidopsis gene FUSCA3 (FUS3), isolated from the protocorm-like body (PLB) of Rosa canina and designated RcFUS3, encodes 331 amino acid residues. It was shown that RcFUS3 is specifically expressed in the PLB of R. canina and that its subcellular localization is in the nucleus. The Arabidopsis fus3-3 mutant phenotype could be rescued by over-expression of RcFUS3, suggesting that RcFUS3 has a function similar to that of Arabidopsis FUS3. Over-expression of RcFUS3 in wild type Arabidopsis resulted in a decrease in endogenous GA and CTK levels, an increase in ABA and IAA contents, starch grain accumulation in the cotyledon and hypocotyl, failure of cotyledon extension and abnormal elongation of the hypocotyl, abnormal stomatal and pavement cells, an increase in branch numbers, prolongation of the growth cycle, and morphological changes in floral organs. Interestingly, over-expression of RcFUS3 in homozygous form resulted in premature degradation of the tapetum, indehiscent anthers and hypogenetic stamens, causing complete male sterility in Arabidopsis; this is the first observation that over-expression of a gene (RcFUS3) homologous to FUS3 can lead to male sterility and starch grain accumulation in Arabidopsis.


PLOS ONE | 2018

Genome-wide identification and expression profiling of the auxin response factor (ARF) gene family in physic nut

Yuehui Tang; Xinxin Bao; Kun Liu; Jian Wang; Ju Zhang; Youwei Feng; Yangyang Wang; Luoxiao Lin; Jingcheng Feng; Chengwei Li

Auxin response factors (ARF) are important transcription factors which mediate the transcription of auxin responsive genes by binding directly to auxin response elements (AuxREs) found in the promoter regions of these genes. To date, no information has been available about the genome-wide organization of the ARF transcription factor family in physic nut. In this study, 17 ARF genes (JcARFs) are identified in the physic nut genome. A detailed investigation into the physic nut ARF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under various conditions. Phylogenetic analysis suggests that the 17 JcARF proteins are clustered into 6 groups, and most JcARF proteins from the physic nut reveal closer relationships with those from Arabidopsis than those from rice. Of the 17 JcARF genes, eight are predicted to be the potential targets of small RNAs; most of the genes show differential patterns of expression among four tissues (root, stem cortex, leaf, and seed); and qRT-PCR indicates that the expression of all JcARF genes is inhibited or induced in response to exogenous auxin. Expression profile analysis based on RNA-seq data shows that in leaves, 11 of the JcARF genes respond to at least one abiotic stressor (drought and/or salinity) at, as a minimum, at least one time point. Our results provide valuable information for further studies on the roles of JcARF genes in regulating physic nuts growth, development and responses to abiotic stress.

Collaboration


Dive into the Ju Zhang's collaboration.

Top Co-Authors

Avatar

Yi Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianxin Wu

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fuli Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liangjun Zhao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan-Yan Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhihua Lui

Northeast Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge