Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan F. López-Giménez is active.

Publication


Featured researches published by Juan F. López-Giménez.


Nature | 2008

Identification of a serotonin/glutamate receptor complex implicated in psychosis

Javier González-Maeso; Rosalind L. Ang; Tony Yuen; Pokman Chan; Noelia V. Weisstaub; Juan F. López-Giménez; Mingming Zhou; Yuuya Okawa; Luis F. Callado; Graeme Milligan; Jay A. Gingrich; Marta Filizola; J. Javier Meana; Stuart C. Sealfon

The psychosis associated with schizophrenia is characterized by alterations in sensory processing and perception. Some antipsychotic drugs were identified by their high affinity for serotonin 5-HT2A receptors (2AR). Drugs that interact with metabotropic glutamate receptors (mGluR) also have potential for the treatment of schizophrenia. The effects of hallucinogenic drugs, such as psilocybin and lysergic acid diethylamide, require the 2AR and resemble some of the core symptoms of schizophrenia. Here we show that the mGluR2 interacts through specific transmembrane helix domains with the 2AR, a member of an unrelated G-protein-coupled receptor family, to form functional complexes in brain cortex. The 2AR–mGluR2 complex triggers unique cellular responses when targeted by hallucinogenic drugs, and activation of mGluR2 abolishes hallucinogen-specific signalling and behavioural responses. In post-mortem human brain from untreated schizophrenic subjects, the 2AR is upregulated and the mGluR2 is downregulated, a pattern that could predispose to psychosis. These regulatory changes indicate that the 2AR–mGluR2 complex may be involved in the altered cortical processes of schizophrenia, and this complex is therefore a promising new target for the treatment of psychosis.


The Journal of Neuroscience | 2006

Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1–A2A Receptor Heteromers

Francisco Ciruela; Vicent Casadó; Ricardo J. Rodrigues; Rafael Luján; Javier Burgueño; Meritxell Canals; Janusz Borycz; Nelson Rebola; Steven R. Goldberg; Josefa Mallol; Antonio Cortés; Enric I. Canela; Juan F. López-Giménez; Graeme Milligan; Carme Lluis; Rodrigo A. Cunha; Sergi Ferré; Rafael Franco

The functional role of heteromers of G-protein-coupled receptors is a matter of debate. In the present study, we demonstrate that heteromerization of adenosine A1 receptors (A1Rs) and A2A receptors (A2ARs) allows adenosine to exert a fine-tuning modulation of glutamatergic neurotransmission. By means of coimmunoprecipitation, bioluminescence and time-resolved fluorescence resonance energy transfer techniques, we showed the existence of A1R–A2AR heteromers in the cell surface of cotransfected cells. Immunogold detection and coimmunoprecipitation experiments indicated that A1R and A2AR are colocalized in the same striatal glutamatergic nerve terminals. Radioligand-binding experiments in cotransfected cells and rat striatum showed that a main biochemical characteristic of the A1R–A2AR heteromer is the ability of A2AR activation to reduce the affinity of the A1R for agonists. This provides a switch mechanism by which low and high concentrations of adenosine inhibit and stimulate, respectively, glutamate release. Furthermore, it is also shown that A1R–A2AR heteromers constitute a unique target for caffeine and that chronic caffeine treatment leads to modifications in the function of the A1R–A2AR heteromer that could underlie the strong tolerance to the psychomotor effects of caffeine.


Naunyn-schmiedebergs Archives of Pharmacology | 1997

Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907.

Juan F. López-Giménez; Guadalupe Mengod; José Palacios; Maria Teresa Vilaró

The recently developed 5-HT2A receptor selective antagonist [3H]MDL100,907 ((+/–)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol]) has been characterized as a radioligand for the autoradiographic visualization of these receptors. [3H]MDL100,907 binding to rat brain tissue sections was saturable, had sub-nanomolar affinity (Kd=0.2–0.3nM), and presented a pharmacological profile consistent with its binding to 5-HT2A receptors (rank order of affinity for [3H]MDL100,907-labelled receptors: MDL100,907 > spiperone > ketanserin > mesulergine). The distribution of receptors labelled by [3H]MDL100,907 was compared to the autoradiographical patterns obtained with [3H]Ketanserin, [3H]Mesulergine, and [3H]RP62203 (N-[3-[4-(4-fluorophenyl)-piperazin-1-y1]propyl]-1,8-naphtalenesultam) and to the distribution of 5-HT2A receptor mRNA as determined by in situ hybridization. As opposed to the other radioligands, [3H]MDL100,907 labelled a single population of sites (5-HT2A receptors) and presented extremely low levels of non-specific binding. The close similarity of the distributions of [3H]MDL100,907-labelled receptors and 5-HT2A mRNA further supports the selectivity of this radioligand for 5-HT2A receptors and suggests a predominant somatodendritic localization of these receptors. The present results point to [3H]MDL100,907 as the ligand of choice for the autoradiographic visualization of 5-HT2A receptors.


Molecular Pharmacology | 2007

The α1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery and function

Juan F. López-Giménez; Meritxell Canals; John D. Pediani; Graeme Milligan

Approaches to identify G protein-coupled receptor oligomers rather than dimers have been lacking. Using concatamers of fluorescent proteins, we established conditions to monitor sequential three-color fluorescence resonance energy transfer (3-FRET) and used these to detect oligomeric complexes of the α1b-adrenoceptor in single living cells. Mutation of putative key hydrophobic residues in transmembrane domains I and IV resulted in substantial reduction of sequential 3-FRET and was associated with lack of protein maturation, prevention of plasma membrane delivery, and elimination of signaling function. Although these mutations prevented cell surface delivery, bimolecular fluorescence complementation studies indicated that they did not ablate protein-protein interactions and confirmed endoplasmic reticulum/Golgi retention of the transmembrane domain I plus transmembrane domain IV mutated receptor. The transmembrane domain I plus transmembrane domain IV mutated receptor was a “dominant-negative” in blocking cell surface delivery of the wild-type receptor. Mutations only in transmembrane domain I did not result in a reduction in 3-FRET, whereas restricting mutation to transmembrane domain IV did result in reduced 3-FRET. Mutations in either transmembrane domain I or transmembrane domain IV, however, were sufficient to eliminate cell surface delivery. Terminal N-glycosylation is insufficient to determine cell surface delivery because both transmembrane domain I and transmembrane domain IV mutants matured as effectively as the wild-type receptor. These data indicate that the α1b-adrenoceptor is able to form oligomeric rather than only simple dimeric complexes and that disruption of effective oligomerization by introducing mutations into transmembrane domain IV has profound consequences for cell surface delivery and function.


Histochemical Journal | 1996

5-HT RECEPTORS IN MAMMALIAN BRAIN : RECEPTOR AUTORADIOGRAPHY AND IN SITU HYBRIDIZATION STUDIES OF NEW LIGANDS AND NEWLY IDENTIFIED RECEPTORS

Guadalupe Mengod; M. T. Vilaró; Andreu Raurich; Juan F. López-Giménez; Roser Cortés; José Palacios

SummaryIn recent years the family of mammalian serotonin receptors has grown to 14 different subtypes, characterized by pharmacological or molecular biological techniques. In parallel, new ligand molecules have been developed for their study. However, selective ligands are not yet available to study every one of them. In addition the degree of selectivity of ligands, hitherto regarded as specific for a particular receptor subtype has been called in question by their affinities for newly discovered receptors. Consequently, a re-evaluation of past ligand receptor autoradiography work is necessary in view of the redefined receptor profiles of these ligands, and the introduction of newly developed ligands. A further difficulty for the characterization of these receptors is the absence of selective antagonist ligands which, for some of the subtypes, have become available only recently. In an attempt to overcome these difficulties we have combinedin situ hybridization histochemistry and receptor ligand autoradiography to study the regional and cellular localization of several serotonin receptors in the rodent brain. In addition, for some receptors, we have expanded these studies to primates, including humans.We have found that the distribution of 5-HT1A receptors in monkey brain, labelled with the agonist3H-8-OH-DPAT and the antagonist3H-WAY 100635 was very similar at the levels examined, and corresponded well with that observed for the cells containing mRNA coding for this receptor, confirming the somatodendritic localization of 5-HT1A receptors in monkey brain. The labelling conditions to visualize 5-HT1F receptors in guinea pig brain, namely3H-sumatriptan in the presence of 10−8m 5-CT to block 5-HT1D receptors, are suitable for visualizing this receptor, since the results agreed with those observed byin situ hybridization. By using3H-ketanserin and3H-mesulergine in parallel within situ hybridization using the corresponding oligonucleotides, we were able to show that these ligands label respectively 5-HT2A and 5-HT2C binding sites in monkey brain. 5-HT4 receptors were localized in the brain of several species including humans by using125I-SB 207710.In situ hybridization experiments performed in guinea pig confirmed that 5-HT4 receptors are localized on the terminals of the striatopallidal and striatonigral projections. 5-HT7 binding sites were labelled in rat and guinea pig brains by incubating with3H-5-CT in the presence of 100 μm WAY 100135 and 250 μm GR 127935; the distribution obtained in both species agreed, in general, with that of the corresponding mRNA coding for them. These results are an illustration of the understanding of our current knowledge of the chemical neuroanatomy of the mammalian 5-HT system.


Journal of Biological Chemistry | 2012

Identification of Three Residues Essential for 5-Hydroxytryptamine 2A-Metabotropic Glutamate 2 (5-HT2A·mGlu2) Receptor Heteromerization and Its Psychoactive Behavioral Function

José L. Moreno; Carolina Muguruza; Adrienne Umali; Steven Mortillo; Terrell Holloway; Fuencisla Pilar-Cuéllar; Giuseppe Mocci; Jeremy Seto; Luis F. Callado; Rachael L. Neve; Graeme Milligan; Stuart C. Sealfon; Juan F. López-Giménez; J. Javier Meana; Deanna L. Benson; Javier González-Maeso

Background: The 5-HT2A·mGlu2 receptor heterocomplex is involved in psychosis. Results: Substitution of Ala-6774.40, Ala-6814.44, and Ala-6854.48 in mGlu2 abolishes the behavioral effects of hallucinogenic 5-HT2A agonists. Conclusion: Three residues at transmembrane domain 4 of mGlu2 are necessary to form the 5-HT2A·mGlu2 receptor heterocomplex. Significance: These results provide insight into the structure and behavioral function of the 5-HT2A·mGlu2 receptor heterocomplex. Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor in the mouse frontal cortex. Substitution of these residues (Ala-6774.40, Ala-6814.44, and Ala-6854.48) leads to absence of 5-HT2A·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT2A agonists. Furthermore, the ligand binding interaction between the components of the 5-HT2A·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer.


Journal of Neuroscience Research | 2002

Serotonin 2C receptor knockout mice: Autoradiographic analysis of multiple serotonin receptors

Juan F. López-Giménez; Laurence H. Tecott; José Palacios; Guadalupe Mengod; M. Teresa Vilaró

Quantitative receptor autoradiography was used to study possible alterations of the densities of multiple serotonin (5‐HT) receptor subtypes and of serotonin transporter in the brain of 5‐HT2C receptor knockout mice. The radioligands employed were [3H]citalopram, [3H]WAY100,635, [3H]8‐OH‐DPAT, [3H]GR125743, [3H]sumatriptan, [3H]MDL100,907, [125I](±)DOI, [3H]mesulergine, [3H]5‐HT, [3H]GR113808, and [3H]5‐CT. As expected, radioligands that label 5‐HT2C receptors showed a complete absence of labeling in mutant mice choroid plexus and significantly reduced densities in other brain regions expressing 5‐HT2C receptors. With the rest of the radioligands, no significant alterations in the densities of labeled sites were found in any brain region. In situ hybridization showed no changes in 5‐HT2A receptor and serotonin transporter mRNA levels, whereas 5‐HT2C receptor mRNA levels were reduced in certain brain regions. The present results indicate that the mouse serotonergic system does not exhibit compensatory up‐ or down‐regulation of the majority of its components (serotonin transporter and most 5‐HT receptor subtypes) in response to the absence of 5‐HT2C receptors.


Neuropharmacology | 1998

[3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain

Juan F. López-Giménez; M. Teresa Vilaró; José Palacios; Guadalupe Mengod

The selective antagonist for the 5-HT2A serotonin receptor MDL 100,907, recently characterized autoradiographically in rat brain, has been characterized as a radioligand for the visualization of this receptor in human and monkey brain. In both species [3H]MDL 100,907 binding to brain sections was saturable, had sub-nanomolar affinity (Kd = 0.14-0.19 nM in human brain; Kd= 0.16-0.19 nM in monkey brain) and presented a pharmacological profile consistent with its binding to 5-HT2A receptors (rank order of affinity for [3H]MDL 100,907-labeled receptors: MDL 100,907 > spiperone > ketanserin > mesulergine). The autoradiographical signal obtained with [3H]MDL 100,907 was compared to the signal obtained with [3H]ketanserin, [3H]RP62203 and [3H]mesulergine in both species, and to the distribution of 5-HT2A receptor mRNA as determined by in situ hybridization in monkey brain. At variance with the other radioligands, [3H]MDL 100,907 showed a single population of binding sites with extremely low levels of non-specific binding. As expected, mesulergine showed low affinity for [3H]MDL 100,907-labeled receptors and the autoradiographic pattern shown by [3H]mesulergine confirmed the lack of labeling of the 5-HT2A receptor by this radioligand in primate brain. The similarity of the distribution of [3H]MDL 100,907-labeled receptors and 5-HT2A mRNA in monkey brain, supports the selectivity of this radioligand for 5-HT2A receptors and suggests a somatodendritic localization of these receptors. The present results confirm [3H]MDL 100,907 as the radioligand of choice at present for the autoradiographic visualization of 5-HT2A receptors in mammalian brain including post-mortem human brain.


Molecular Brain Research | 1998

Early localization of mRNA coding for 5-HT1A receptors in human brain during development

Elena del Olmo; Juan F. López-Giménez; M. Teresa Vilaró; Guadalupe Mengod; José Palacios; Angel Pazos

The distribution of 5-HT1A receptor mRNA in the human brain was studied in neonatal, children and adult cases by means of in situ hybridization histochemistry, using an oligonucleotide derived from the coding region of the human receptor. A prenatal pattern of development was observed. The hippocampus, raphe nuclei and neocortex presented high levels of hybridization already at the fetal/neonatal stage, fully comparable to the adult. A high and transient hybridization signal was found in cerebellum. These results support a role for 5-HT1A receptors in the regulation of neural development.


GPCRs: From Deorphanization to Lead Structure Identification | 2007

The role of GPCR dimerisation/oligomerisation in receptor signalling.

Graeme Milligan; Meritxell Canals; John D. Pediani; James L. Ellis; Juan F. López-Giménez

A wide range of techniques have been employed to examine the quaternary structure of G-protein-coupled receptors (GPCRs). Although it is well established that homo-dimerisation is common, recent studies have sought to explore the physical basis of these interactions and the role of dimerisation in signal transduction. Growing evidence hints at the existence of higher-order organisation of individual GPCRs and the potential for hetero-dimerisation between pairs of co-expressed GPCRs. Here we consider how both homo-dimerisation/oligomerisation and hetero-dimerisation can regulate signal transduction through GPCRs and the potential consequences of this for function of therapeutic medicines that target GPCRs. Hetero-dimerisation is not the sole means by which co-expressed GPCRs may regulate the function of one another. Heterologous desensitisation may be at least as important and we also consider if this can be the basis for physiological antagonism between pairs of co-expressed GPCRs. Although there may be exceptions (Meyer et al. 2006), a great deal of recent evidence has indicated that most G-protein-coupled receptors (GPCRs) do not exist as monomers but rather as dimers or, potentially, within higher-order oligomers (Milligan 2004b; Park et al. 2004). Support for such models has been provided by a range of studies employing different approaches, including co-immunoprecipitation of differentially epitope-tagged but co-expressed forms of the same GPCR, co-operativity in ligand binding and a variety of resonance energy transfer techniques (Milligan and Bouvier 2005). Only for the photon receptor rhodopsin has the organisational structure of a GPCR been studied in situ. The application of atomic force microscopy to murine rod outer segment discs indicated that rhodopsin is organised in a series of parallel arrays of dimers (Liang et al. 2003) and based on this, molecular models were constructed to try to define and interpret regions of contact between the monomers (Fotiadis et al. 2004). Only for relatively few other GPCRs are details of the molecular basis of dimerisation available but within this limited data set, recent studies on the dopamine D2 receptor suggest a means by which information on the binding of an agonist can be transmitted between the two elements of the dimer via the dimer interface (Guo et al. 2005). Although the availability of cDNAs encoding molecularly defined GPCRs has allowed high-throughput screening for ligands that modulate GPCR function, this is performed almost exclusively in heterologous cell lines transfected to express only the specific GPCR of interest. Given that the human genome contains some 400-450 genes encoding non-chemosensory GPCRs, it is clear that any individual cell of the body may express a considerable number of GPCRs. Interactions between these, either via hetero-dimerisation, via heterologous desensitisation or via the integration of downstream signals can potentially alter the pharmacology, sensitivity and function of receptor agonists and hence produce varied responses. In this article, we will use specific examples to consider the role of homo-dimerisation/oligomerisation in GPCR function and whether either direct hetero-dimerisation or heterologous desensitisation between pairs of co-expressed GPCRs affects the function of the receptor pairs.

Collaboration


Dive into the Juan F. López-Giménez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guadalupe Mengod

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Teresa Vilaró

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier González-Maeso

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Javier Meana

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

José L. Moreno

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge