Juan Francisco Codocedo
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Francisco Codocedo.
PLOS ONE | 2012
Juan Francisco Codocedo; Claudio Allard; Juan A. Godoy; Lorena Varela-Nallar; Nibaldo C. Inestrosa
Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.
The Journal of Neuroscience | 2009
Claudio Coddou; Juan Francisco Codocedo; Shuo Li; Juan G. Lillo; Claudio Acuña-Castillo; Paulina Bull; Stanko S. Stojilkovic; J. Pablo Huidobro-Toro
P2X receptor channels (P2XRs) are allosterically modulated by several compounds, mainly acting at the ectodomain of the receptor. Like copper, mercury, a metal that induces oxidative stress in cells, also stimulates the activity of P2X2R and inhibits the activity of P2X4R. However, the mercury modulation is not related to the extracellular residues critical for copper modulation. To identify the site(s) for mercury action, we generated two chimeras using the full size P2X2 subunit, termed P2X2a, and a splice variant lacking a 69 residue segment in the C terminal, termed P2X2b, as the donors for intracellular and transmembrane segments and the P2X4 subunit as the donor for ectodomain segment of chimeras. The potentiating effect of mercury on ATP-induced current was preserved in Xenopus oocytes expressing P2X4/2a chimera but was absent in oocytes expressing P2X4/2b chimera. Site-directed mutagenesis experiments revealed that the Cys430 residue mediates effects of mercury on the P2X2aR activity. Because mercury could act as an oxidative stress inducer, we also tested whether hydrogen peroxide (H2O2) and mitochondrial stress inducers myxothiazol and rotenone mimicked mercury effects. These experiments, done in both oocytes and human embryonic kidney HEK293 cells, revealed that these compounds potentiated the ATP-evoked P2X2aR and P2X4/2aR currents but not P2X2bR and P2X2a–C430A and P2X2a–C430S mutant currents, whereas antioxidants dithiothreitrol and N-acetylcysteine prevented the H2O2 potentiation. Alkylation of Cys430 residue with methylmethane-thiosulfonate also abolished the mercury and H2O2 potentiation. Altogether, these results are consistent with the hypothesis that the Cys430 residue is an intracellular P2X2aR redox sensor.
PLOS ONE | 2013
Juan Francisco Codocedo; Juan A. Godoy; Maria Ines Poblete; Nibaldo C. Inestrosa; Juan Pablo Huidobro-Toro
To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2′(3′)-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by Nω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.
Molecular Neurobiology | 2017
Daniela Vallejo; Juan Francisco Codocedo; Nibaldo C. Inestrosa
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Neuroscience & Biobehavioral Reviews | 2016
Juan Francisco Codocedo; Nibaldo C. Inestrosa
The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state.
Biological Research | 2016
Juan Francisco Codocedo; Nibaldo C. Inestrosa
BackgroundWnt-5a is a member of the WNT family of secreted lipoglycoproteins, whose expression increases during development; moreover, Wnt-5a plays a key role in synaptic structure and function in the adult nervous system. However, the mechanism underlying these effects is still elusive. MicroRNAs (miRNAs) are a family of small non-coding RNAs that control the gene expression of their targets through hybridization with complementary sequences in the 3′ UTR, thereby inhibiting the translation of the target proteins. Several evidences indicate that the miRNAs are actively involved in the regulation of neuronal function.ResultsIn the present study, we examined whether Wnt-5a modulates the levels of miRNAs in hippocampal neurons. Using PCR arrays, we identified a set of miRNAs that respond to Wnt-5a treatment. One of the most affected miRNAs was miR-101b, which targets cyclooxygenase-2 (COX2), an inducible enzyme that converts arachidonic acid to prostanoids, and has been involved in the injury/inflammatory response, and more recently in neuronal plasticity. Consistent with the Wnt-5a regulation of miR-101b, this Wnt ligand regulates COX2 expression in a time-dependent manner in cultured hippocampal neurons.ConclusionThe biological processes induced by Wnt-5a in hippocampal neurons, involve the regulation of several miRNAs including miR-101b, which has the capacity to regulate several targets, including COX-2 in the central nervous system.
Frontiers in Cellular Neuroscience | 2015
Juan Francisco Codocedo; Carla Montecinos-Oliva; Nibaldo C. Inestrosa
Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers.
Journal of Neurochemistry | 2009
Juan Francisco Codocedo; F Rodriguez; Juan Pablo Huidobro-Toro
As neuroactive steroids modulate several ionotropic receptors, we assessed whether the ATP‐gated currents elicited by P2X4 receptors are modulated by these compounds. We transfected HEK293 cells or injected Xenopus laevis oocytes with the cDNA coding for rat P2X4 receptor. Application of 0.1–10 μM alfaxolone potentiated within 60‐s the 1 μM ATP‐evoked currents with a maximal potentiation of 1.8 and 2.6‐fold in HEK293 or oocytes cells respectively. Allopregnalolone or 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one (THDOC) also potentiated the ATP‐gated currents but with a maximal effect only averaging 1.25 and 1.35‐fold respectively. In contrast, 0.3–10 μM pregnanolone, but not its sulfated derivative, inhibited the ATP‐gated currents; the maximal inhibition reached 40% in both cell types. THDOC, but not other neurosteroids increased significantly the τoff of the ATP‐evoked currents, revealing another mode of neurosteroid modulation. Sexual steroids such as 17β‐estradiol or progesterone were inactive revealing explicit structural requirements. Alfaxolone or THDOC at concentrations 30‐ to 100‐fold larger than required to modulate the receptor, gated the P2X4 receptor eliciting ATP‐like currents that were reduced with suramin or brilliant blue G, but potentiated the P2X4 receptor more than 10‐fold by 10 μM zinc. In conclusion, neurosteroids rapidly modulate via non‐genomic mechanisms and with nanomolar potencies, the P2X4 receptor interacting likely at distinct modulator sites.
Biochimica et Biophysica Acta | 2017
Paulina Salazar; Pedro Cisternas; Juan Francisco Codocedo; Nibaldo C. Inestrosa
Thyroid hormones are vital in the control of multiple body functions, including the correct performance of the brain. Multiple diseases are associated with thyroid gland functioning, including hypothyroidism. To date, little is known regarding the effects of the establishment of this condition at a young age on brain function. Here, we evaluated the effect of hypothyroidism in an early postnatal stage in cognitive abilities with focus on the hippocampus. In our model, hypothyroidism was induced in young rats at 21days of age using 0.05% 6-propyl-2-thiouracil (PTU) for 4weeks reaching significantly lower levels of fT4 (control: 1.337ng/dL±0.115, PTU: 0.050ng/dL±0.001). Following the induction of hypothyroidism, several cognitive tasks were assessed to investigate the effects of hypothyroidism on cognition performance. We determined that hypothyroidism triggers a significant dysfunction in learning and memory processes observed in the Morris Water Maze were the latency times were higher in PTU rats (controls: 37s; PTU: 57s). The cognitive impairment was correlated with a reduction in hippocampal plasticity with respect to both long-term potentiation (LTP) (control: 1.45, PTU: 1.00) and depression (LTD) (control: 0.71, PTU: 1.01). Furthermore, a decrease in the rate of glucose utilization (control: 223nmol∗mg of protein, PTU:148nmol∗mg of protein) was observed, along with an increase in oxidative stress and a decrease in MAP2 marker in the hippocampus. Our findings suggest that the induction of hypothyroidism in a young rat model alters numerous functions at the level of the hippocampus.
Molecular Neurobiology | 2016
Juan Francisco Codocedo; Juvenal A. Ríos; Juan A. Godoy; Nibaldo C. Inestrosa