Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Cisternas is active.

Publication


Featured researches published by Pedro Cisternas.


Progress in Neurobiology | 2014

Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum.

Juvenal A. Ríos; Pedro Cisternas; Marco Arrese; Salesa Barja; Nibaldo C. Inestrosa

Alzheimers disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.


Journal of Neurochemistry | 2009

The Na+‐dependent l‐ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids

Teresa Caprile; Katterine Salazar; Allisson Astuya; Pedro Cisternas; Carmen Silva-Alvarez; Carola Millán; María de los Angeles García; Francisco Nualart

Ascorbic acid (AA) is best known for its role as an essential nutrient in humans and other species. As the brain does not synthesize AA, high levels are achieved in this organ by specific uptake mechanisms, which concentrate AA from the bloodstream to the CSF and from the CSF to the intracellular compartment. Two different isoforms of sodium–vitamin C co‐transporters (SVCT1 and SVCT2) have been cloned. Both SVCT proteins mediate high affinity Na+‐dependent l‐AA transport and are necessary for the uptake of vitamin C in many tissues. In the adult brain the expression of SVCT2 was observed in the hippocampus and cortical neurons by in situ hybridization; however, there is no data regarding the expression and distribution of this transporter in the fetal brain. The expression of SVCT2 in embryonal mesencephalic neurons has been shown by RT‐PCR suggesting an important role for vitamin C in dopaminergic neuronal differentiation. We analyze SVCT2 expression in human and rat developing brain by RT‐PCR. Additionally, we study the normal localization of SVCT2 in rat fetal brain by immunohistochemistry and in situ hybridization demonstrating that SVCT2 is highly expressed in the ventricular and subventricular area of the rat brain. SVCT2 expression and function was also confirmed in neurons isolated from brain cortex and cerebellum. The kinetic parameters associated with the transport of AA in cultured neurons and neuroblastoma cell lines were also studied. We demonstrate two different affinity transport components for AA in these cells. Finally, we show the ability of different flavonoids to inhibit AA uptake in normal or immortalized neurons. Our data demonstrates that brain cortex and cerebellar stem cells, neurons and neuroblastoma cells express SVCT2. Dose‐dependent inhibition analysis showed that quercetin inhibited AA transport in cortical neurons and Neuro2a cells.


Molecular Neurobiology | 2014

Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis.

Pedro Cisternas; Juan Pablo Henríquez; Enrique Brandan; Nibaldo C. Inestrosa

The signaling pathways activated by Wnt ligands are related to a wide range of critical cell functions, such as cell division, migration, and synaptogenesis. Here, we summarize compelling evidence on the role of Wnt signaling on several features of skeletal muscle physiology. We briefly review the role of Wnt pathways on the formation of muscle fibers during prenatal and postnatal myogenesis, highlighting its role on the activation of stem cells of the adult muscles. We also discuss how Wnt signaling regulates the precise formation of neuromuscular synapses, by modulating the differentiation of presynaptic and postsynaptic components, particularly regarding the clustering of acetylcholine receptors on the muscle membrane. In addition, based on previous evidence showing that Wnt pathways are linked to several diseases, such as Alzheimers and cancer, we address recent studies indicating that Wnt signaling plays a key role in skeletal muscle fibrosis, a disease characterized by an increase in the extracellular matrix components leading to failure in muscle regeneration, tissue disorganization and loss of muscle activity. In this context, we also discuss the possible cross-talk between the Wnt/β-catenin pathway with two other critical profibrotic pathways, transforming growth factor β and connective tissue growth factor, which are potent stimulators of the accumulation of connective tissue, an effect characteristic of the fibrotic condition. As it has emerged in other pathological conditions, we suggests that muscle fibrosis may be a consequence of alterations of Wnt signaling activity.


Molecular Neurobiology | 2016

Role of Wnt Signaling in Central Nervous System Injury

Catherine Lambert; Pedro Cisternas; Nibaldo C. Inestrosa

The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury.


Current Molecular Medicine | 2014

Role of Wnt Signaling in Tissue Fibrosis, Lessons from Skeletal Muscle and Kidney

Pedro Cisternas; Carlos P. Vio; Nibaldo C. Inestrosa

Several studies have provided clear evidence of the importance of Wnt signaling in the function of several tissues. Wnt signaling has been related to several cellular processes including pre-natal development, cell division, regeneration and stem cell generation. By contrast, deregulation of this pathway has been associated with several diseases such as cancer, Alzheimers disease, diabetes and, in recent years, fibrotic diseases in tissues such as skeletal muscle and kidney. Fibrotic diseases are characterized by an increase in the production and accumulation of extracellular matrix (ECM) components leading to the loss of tissue architecture and function. In a classical view, several molecules are related to the establishment of the fibrotic condition, including angiotensin II, transforming growth factorβ(TGF-β) and the connective tissue growth factor (CTGF) and a crosstalk has been suggested between these signaling molecules and the Wnt pathway. Skeletal muscle fibrosis, the most common disease, is typical of muscle dystrophies, where deregulation of the regenerative process in postnatal muscle leads to fibrotic differentiation and eventually to the failure of skeletal muscle. The fibrotic condition is also present in kidney pathologies such as polycystic kidney disease (PKD), in which fibrosis leads to a loss of tubule architecture and to a loss of function, which in almost all cases requires kidney surgery. A new actor in the pro-fibrotic effect of Wnt signaling in the kidney has been described, the primary cilium, an organelle that plays an important role in the onset of fibrosis. The aim of this review is to discuss the pro-fibrotic effect of Wnt signaling in both skeletal muscle and kidney, and to try to understand how this pathway is associated with the TGF-β, CTGF and angiotensin II pro-fibrotic pathway.


Brain Pathology | 2015

Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease

Nibaldo C. Inestrosa; Juvenal A. Ríos; Pedro Cisternas; Cheril Tapia-Rojas; Daniela S. Rivera; Nady Braidy; Juan M. Zolezzi; Juan A. Godoy; Francisco J. Carvajal; Alvaro O. Ardiles; Francisco Bozinovic; Adrian G. Palacios; Perminder S. Sachdev

Alzheimers disease (AD) is the most common neurodegenerative disorder and the leading cause of age‐related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild‐type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age‐related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative‐activated receptor γ coactivator‐1α (PGC‐1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.


Journal of Neurochemistry | 2014

The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism

Pedro Cisternas; Carmen Silva-Alvarez; Fernando Martínez; Emilio Fernández; Luciano Ferrada; Karina Oyarce; Katterine Salazar; Juan P. Bolaños; Francisco Nualart

Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time‐ and dose‐dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes.


Biochimica et Biophysica Acta | 2015

Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

Pedro Cisternas; Paulina Salazar; Felipe G. Serrano; Carla Montecinos-Oliva; Sebastián B. Arredondo; Lorena Varela-Nallar; Salesa Barja; Carlos P. Vio; Fernando Gomez-Pinilla; Nibaldo C. Inestrosa

Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders.


Frontiers in Cellular Neuroscience | 2013

SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

Patricia Pastor; Pedro Cisternas; Katterine Salazar; Carmen Silva-Alvarez; Karina Oyarce; Nery Jara; Francisca Espinoza; Agustin Martínez; Francisco Nualart

Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development, and proliferation and neural differentiation increase at day 21. In the human brain, a similar subventricular niche was observed at 1-month of postnatal development. Using immunohistochemistry, sodium-vitamin C cotransporter 2 (SVCT2) expression was detected in the subventricular zone (SVZ) and rostral migratory stream (RMS). Low co-distribution of SVCT2 and βIII-tubulin in neuroblasts or type-A cells was detected, and minimal co-localization of SVCT2 and GFAP in type-B or precursor cells was observed. Similar results were obtained in the human neurogenic niche. However, BrdU-positive cells also expressed SVCT2, suggesting a role of vitamin C in neural progenitor proliferation. Primary neurospheres prepared from rat brain and the P19 teratocarcinoma cell line, which forms neurospheres in vitro, were used to analyze the effect of vitamin C in neural stem cells. Both cell types expressed functional SVCT2 in vitro, and ascorbic acid (AA) induced their neural differentiation, increased βIII-tubulin and SVCT2 expression, and amplified vitamin C uptake.


Molecular Neurobiology | 2016

Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes

Andrea García-Krauss; Luciano Ferrada; Allisson Astuya; Katterine Salazar; Pedro Cisternas; Fernando Martínez; Eder Ramírez; Francisco Nualart

Ascorbic acid (AA), the reduced form of vitamin C, is incorporated into neurons via the sodium ascorbate co-transporter SVCT2. However, this transporter is not expressed in astrocytes, which take up the oxidized form of vitamin C, dehydroascorbic acid (DHA), via the facilitative hexose transporter GLUT1. Therefore, neuron and astrocyte interactions are thought to mediate vitamin C recycling in the nervous system. Although astrocytes are essential for the antioxidant defense of neurons under oxidative stress, a condition in which a large amount of ROS is generated that may favor the extracellular oxidation of AA and the subsequent neuronal uptake of DHA via GLUT3, potentially increasing oxidative stress in neurons. This study analyzed the effects of oxidative stress and DHA uptake on neuronal cell death in vitro. Different analyses revealed the presence of the DHA transporters GLUT1 and GLUT3 in Neuro2a and HN33.11 cells and in cortical neurons. Kinetic analyses confirmed that all cells analyzed in this study possess functional GLUTs that take up 2-deoxyglucose and DHA. Thus, DHA promotes the death of stressed neuronal cells, which is reversed by incubating the cells with cytochalasin B, an inhibitor of DHA uptake by GLUT1 and GLUT3. Additionally, the presence of glial cells (U87 and astrocytes), which promote DHA recycling, reverses the observed cell death of stressed neurons. Taken together, these results indicate that DHA promotes the death of stressed neurons and that astrocytes are essential for the antioxidative defense of neurons. Thus, the astrocyte-neuron interaction may function as an essential mechanism for vitamin C recycling, participating in the antioxidative defense of the brain.

Collaboration


Dive into the Pedro Cisternas's collaboration.

Top Co-Authors

Avatar

Nibaldo C. Inestrosa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Paulina Salazar

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carlos P. Vio

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Felipe G. Serrano

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Milka Martinez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Alejandro S. Godoy

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carmen Silva-Alvarez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carolina B. Lindsay

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Cheril Tapia-Rojas

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Daniela S. Rivera

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge