Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan J. Uriarte is active.

Publication


Featured researches published by Juan J. Uriarte.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Vascular Smooth Muscle Cell Phenotypic Changes in Patients With Marfan Syndrome

Eva Crosas-Molist; Thayna Meirelles; Judit López-Luque; Carla Serra-Peinado; Javier Selva; Laia Caja; Darya Gorbenko del Blanco; Juan J. Uriarte; Esther Bertran; Yolanda Mendizábal; Vanessa Hernández; Carolina García-Calero; Oscar Busnadiego; Enric Condom; David Toral; Manel Castella; Alberto Forteza; Daniel Navajas; Elisabet Sarri; Fernando Rodríguez-Pascual; Harry C. Dietz; Isabel Fabregat; Gustavo Egea

Objective— Marfan’s syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-&bgr; signaling. TGF-&bgr; is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-&bgr; signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan’s syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Approach and Results— Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (&agr;-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-&bgr; pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. Conclusions— In Marfan VSMC, both in tissue and in culture, there are variable TGF-&bgr;-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan’s syndrome aneurysm formation.


Scientific Reports | 2017

Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples

Hermann Schillers; Carmela Rianna; Jens Schäpe; Tomas Luque; Holger Doschke; Mike Wälte; Juan J. Uriarte; Noelia Campillo; Georgios P. A. Michanetzis; Justyna Bobrowska; Andra C. Dumitru; Elena T. Herruzo; Simone Bovio; Pierre Parot; Massimiliano Galluzzi; Alessandro Podestà; Luca Puricelli; Simon Scheuring; Yannis Missirlis; Ricardo Garcia; Michael Odorico; Jean-Marie Teulon; Frank Lafont; Małgorzata Lekka; Felix Rico; Annafrancesca Rigato; Jean-Luc Pellequer; Hans Oberleithner; Daniel Navajas; Manfred Radmacher

We present a procedure that allows a reliable determination of the elastic (Young’s) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever’s spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation

Juan J. Uriarte; Paula Naomi Nonaka; Noelia Campillo; Renata Kelly da Palma; Esther Melo; Luis V.F. Oliveira; Daniel Navajas; Ramon Farré

Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.


Respiratory Physiology & Neurobiology | 2014

Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate

Paula Naomi Nonaka; Juan J. Uriarte; Noelia Campillo; Esther Melo; Daniel Navajas; Ramon Farré; Luis V.F. Oliveira

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.


Journal of Cellular Physiology | 2017

Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy

Ignasi Jorba; Juan J. Uriarte; Noelia Campillo; Ramon Farré; Daniel Navajas

The extracellular matrix (ECM) determines 3D tissue architecture and provides structural support and chemical and mechanical cues to the cells. Atomic force microscopy (AFM) has unique capabilities to measure ECM mechanics at the scale at which cells probe the mechanical features of their microenvironment. Moreover, AFM measurements can be readily combined with bright field and fluorescence microscopy. Performing reliable mechanical measurements with AFM requires accurate calibration of the device and correct computation of the mechanical parameters. A suitable approach to isolate ECM mechanics from cell contribution is removing the cells by means of an effective decellularization process that preserves the composition, structure and mechanical properties of the ECM. AFM measurement of ECM micromechanics provides important insights into organ biofabrication, cell‐matrix mechanical crosstalk and disease‐induced tissue stiffness alterations. J. Cell. Physiol. 232: 19–26, 2017.


Nature | 2017

Force loading explains spatial sensing of ligands by cells

Roger Oria; Tina Wiegand; Jorge Escribano; Alberto Elosegui-Artola; Juan J. Uriarte; Cristian Moreno-Pulido; Ilia Platzman; Pietro Delcanale; Lorenzo Albertazzi; Daniel Navajas; Xavier Trepat; J.M. García-Aznar; Elisabetta Ada Cavalcanti-Adam; Pere Roca-Cusachs

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin–ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin–ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Microscopy Research and Technique | 2017

Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy.

Alícia Giménez; Juan J. Uriarte; Joan Vieyra; Daniel Navajas; Jordi Alcaraz

The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell‐extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM‐coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state‐of‐the‐art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions. Microsc. Res. Tech. 80:85–96, 2017.


PLOS ONE | 2016

Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome.

Juan J. Uriarte; Thayna Meirelles; Darya Gorbenko del Blanco; Paula Naomi Nonaka; Noelia Campillo; Elisabet Sarri; Daniel Navajas; Gustavo Egea; Ramon Farré

Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome.


Respiratory Research | 2016

Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ

Paula Naomi Nonaka; Juan J. Uriarte; Noelia Campillo; Vinicius R. Oliveira; Daniel Navajas; Ramon Farré

A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.


PLOS ONE | 2017

Effects of two different decellularization routes on the mechanical properties of decellularized lungs

Jessica Julioti Urbano; Renata Kelly da Palma; Flávia Mafra de Lima; Paula Fratini; Letícia Lopes Guimarães; Juan J. Uriarte; Letícia Heineck Alvarenga; Maria Angélica Miglino; Rodolfo de Paula Vieira; Renato Araujo Prates; Daniel Navajas; Ramon Farré; Luis V.F. Oliveira

Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 30 healthy male C57BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties of the acellular lungs was measured after decellularization process. Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that there is no significant difference in the behaviour of mechanical properties and extracellular matrix of the decellularized lungs by using two different routes through the trachea and pulmonary artery.

Collaboration


Dive into the Juan J. Uriarte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Farré

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Julioti Urbano

American Physical Therapy Association

View shared research outputs
Top Co-Authors

Avatar

Esther Melo

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge