Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan L. Rodriguez-Flores is active.

Publication


Featured researches published by Juan L. Rodriguez-Flores.


Circulation | 2007

Tyrosine Hydroxylase, the Rate-Limiting Enzyme in Catecholamine Biosynthesis Discovery of Common Human Genetic Variants Governing Transcription, Autonomic Activity, and Blood Pressure In Vivo

Fangwen Rao; Lian Zhang; Jennifer Wessel; Kuixing Zhang; Gen Wen; Brian Kennedy; Brinda K. Rana; Madhusudan Das; Juan L. Rodriguez-Flores; Douglas W. Smith; Peter E. Cadman; Rany M. Salem; Sushil K. Mahata; Nicholas J. Schork; Laurent Taupenot; Michael G. Ziegler; Daniel T. O’Connor

Background— Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus and then tested variants for contributions to sympathetic function and blood pressure. Methods and Results— We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production, reflex control of the circulation, and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single-nucleotide polymorphisms were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned 4 common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable (h2), as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. Coalescent simulations suggest that TH haplotype 2 likely arose ≈380 000 years ago. In hypertension, 2 independent case-control studies (1266 subjects with 53% women and 927 subjects with 24% women) replicated the effect of C-824T in the determination of blood pressure. Conclusions— We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key adrenergic locus, catecholamine metabolism, and blood pressure and suggest new strategies to approach the mechanism, diagnosis, and treatment of systemic hypertension.


Nature Genetics | 2016

Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences

G. David Poznik; Yali Xue; Fernando L. Mendez; Thomas Willems; Andrea Massaia; Melissa A. Wilson Sayres; Qasim Ayub; Shane McCarthy; Apurva Narechania; Seva Kashin; Yuan Chen; Ruby Banerjee; Juan L. Rodriguez-Flores; Maria Cerezo; Haojing Shao; Melissa Gymrek; Ankit Malhotra; Sandra Louzada; Rob DeSalle; Graham R. S. Ritchie; Eliza Cerveira; Tomas Fitzgerald; Erik Garrison; Anthony Marcketta; David Mittelman; Mallory Romanovitch; Chengsheng Zhang; Xiangqun Zheng-Bradley; Gonçalo R. Abecasis; Steven A. McCarroll

We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.


Journal of Clinical Investigation | 2007

Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk

Lian Zhang; Fangwen Rao; Kuixing Zhang; Srikrishna Khandrika; Madhusudan Das; Sucheta M. Vaingankar; Xuping Bao; Brinda K. Rana; Douglas W. Smith; Jennifer Wessel; Rany M. Salem; Juan L. Rodriguez-Flores; Sushil K. Mahata; Nicholas J. Schork; Michael G. Ziegler; Daniel T. O’Connor

GTP cyclohydrolase 1 (GCH1) is rate limiting in the provision of the cofactor tetrahydrobiopterin for biosynthesis of catecholamines and NO. We asked whether common genetic variation at GCH1 alters transmitter synthesis and predisposes to disease. Here we undertook a systematic search for polymorphisms in GCH1, then tested variants contributions to NO and catecholamine release as well as autonomic function in twin pairs. Renal NO and neopterin excretions were significantly heritable, as were baroreceptor coupling (heart rate response to BP fluctuation) and pulse interval (1/heart rate). Common GCH1 variant C+243T in the 3-untranslated region (3-UTRs) predicted NO excretion, as well as autonomic traits: baroreceptor coupling, maximum pulse interval, and pulse interval variability, though not catecholamine secretion. In individuals with the most extreme BP values in the population, C+243T affected both diastolic and systolic BP, principally in females. In functional studies, C+243T decreased reporter expression in transfected 3-UTRs plasmids. We conclude that human NO secretion traits are heritable, displaying joint genetic determination with autonomic activity by functional polymorphism at GCH1. Our results document novel pathophysiological links between a key biosynthetic locus and NO metabolism and suggest new strategies for approaching the mechanism, diagnosis, and treatment of risk predictors for cardiovascular diseases such as hypertension.


PLOS Genetics | 2013

Reconstructing native American migrations from whole-genome and whole-exome data.

Simon Gravel; Fouad Zakharia; Andres Moreno-Estrada; Jake K. Byrnes; Marina Muzzio; Juan L. Rodriguez-Flores; Eimear E. Kenny; Christopher R. Gignoux; Brian K. Maples; Wilfried Guiblet; Julie Dutil; Marc Via; Karla Sandoval; Gabriel Bedoya; Taras K. Oleksyk; Andres Ruiz-Linares; Esteban G. Burchard; Juan Carlos Martínez-Cruzado; Carlos Bustamante

There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.


BMC Genomics | 2012

RNA-Seq quantification of the human small airway epithelium transcriptome

Neil R. Hackett; Marcus W. Butler; Renat Shaykhiev; Jacqueline Salit; Larsson Omberg; Juan L. Rodriguez-Flores; Jason G. Mezey; Yael Strulovici-Barel; Guoqing Wang; Lukas Didon; Ronald G. Crystal

BackgroundThe small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq).ResultsThe data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype.ConclusionsThese observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.


Endocrinology | 2009

Cathepsin L Colocalizes with Chromogranin A in Chromaffin Vesicles to Generate Active Peptides

Nilima Biswas; Juan L. Rodriguez-Flores; Maïté Courel; Jiaur R. Gayen; Sucheta M. Vaingankar; Manjula Mahata; Justin W. Torpey; Laurent Taupenot; Daniel T. O'Connor; Sushil K. Mahata

Chromogranin A (CgA), the major soluble protein in chromaffin granules, is proteolytically processed to generate biologically active peptides including the catecholamine release inhibitory peptide catestatin. Here we sought to determine whether cysteine protease cathepsin L (CTSL), a novel enzyme for proteolytic processing of neuropeptides, acts like the well-established serine proteases [prohormone convertase (PC)1/3 or PC2] to generate catestatin by proteolytic processing of CgA. We found that endogenous CTSL colocalizes with CgA in the secretory vesicles of primary rat chromaffin cells. Transfection of PC12 cells with an expression plasmid encoding CTSL directed expression of CTSL toward secretory vesicles. Deconvolution fluorescence microscopy suggested greater colocalization of CTSL with CgA than the lysosomal marker LGP110. The overexpression of CTSL in PC12 cells caused cleavage of full-length CgA. CTSL also cleaved CgA in vitro, in time- and dose-dependent fashion, and specificity of the process was documented through E64 (thiol reagent) inhibition. Mass spectrometry on CTSL-digested recombinant CgA identified a catestatin-region peptide, corresponding to CgA(360-373). The pool of peptides generated from the CTSL cleavage of CgA inhibited nicotine-induced catecholamine secretion from PC12 cells. CTSL processing in the catestatin region was diminished by naturally occurring catestatin variants, especially Pro370Leu and Gly364Ser. Among the CTSL-generated peptides, a subset matched those found in the catestatin region in vivo. These findings indicate that CgA can be a substrate for the cysteine protease CTSL both in vitro and in cella, and their colocalization within chromaffin granules in cella suggests the likelihood of an enzyme/substrate relationship in vivo.


Journal of the American College of Cardiology | 2008

Naturally occurring human genetic variation in the 3'-untranslated region of the secretory protein chromogranin A is associated with autonomic blood pressure regulation and hypertension in a sex-dependent fashion.

Yuqing Chen; Fangwen Rao; Juan L. Rodriguez-Flores; Manjula Mahata; Maple M. Fung; Mats Stridsberg; Sucheta M. Vaingankar; Gen Wen; Rany M. Salem; Madhusudan Das; Myles Cockburn; Nicholas J. Schork; Michael G. Ziegler; Bruce A. Hamilton; Sushil K. Mahata; Laurent Taupenot; Daniel T. O'Connor

OBJECTIVESnWe aimed to determine whether the common variation at the chromogranin A (CHGA) locus increases susceptibility to hypertension.nnnBACKGROUNDnCHGA regulates catecholamine storage and release. Previously we systematically identified genetic variants across CHGA.nnnMETHODSnWe carried out dense genotyping across the CHGA locus in >1,000 individuals with the most extreme blood pressures (BPs) in the population, as well as twin pairs with autonomic phenotypes. We also characterized the function of a trait-associated 3-untranslated region (3-UTR) variant with transfected CHGA 3-UTR/luciferase reporter plasmids.nnnRESULTSnCHGA was overexpressed in patients with hypertension, especially hypertensive men, and CHGA predicted catecholamines. In individuals with extreme BPs, CHGA genetic variants predicted BP, especially in men, with a peak association occurring in the 3-UTR at C+87T, accounting for up to approximately 12/ approximately 9 mm Hg. The C+87T genotype predicted CHGA secretion in vivo, with the +87T allele (associated with lower BP) also diminishing plasma CHGA by approximately 10%. The C+87T 3-UTR variant also predicted the BP response to environmental (cold) stress; the same allele (+87T) that diminished basal BP in the population also decreased the systolic BP response to stress by approximately 12 mm Hg, and the response was smaller in women (by approximately 6 mm Hg). In a chromaffin cell-transfected CHGA 3-UTR/luciferase reporter plasmid, the +87T allele associated with lower BP also decreased reporter expression by approximately 30%. In cultured chromaffin cells, reducing endogenous CHGA expression by small interfering ribonucleic acid caused approximately two-thirds depletion of catecholamine storage vesicles.nnnCONCLUSIONSnCommon variant C+87T in the CHGA 3-UTR is a functional polymorphism causally associated with hypertension especially in men of the population, and we propose steps (intermediate phenotypes) whereby in a sex-dependent fashion this genetic variant influences the ultimate disease trait. These observations suggest new molecular strategies to probe the pathophysiology, risk, and rational treatment of hypertension.


Journal of Hypertension | 2010

Human dopamine beta-hydroxylase (DBH) regulatory polymorphism that influences enzymatic activity, autonomic function, and blood pressure.

Yuqing Chen; Gen Wen; Fangwen Rao; Kuixing Zhang; Lei Wang; Juan L. Rodriguez-Flores; Amber P. Sanchez; Manjula Mahata; Laurent Taupenot; Ping Sun; Sushil K. Mahata; Bamidele O. Tayo; Nicholas J. Schork; Michael G. Ziegler; Bruce A. Hamilton; Daniel T. O'Connor

Rationale Dopamine beta-hydroxylase (DBH) plays an essential role in catecholamine synthesis by converting dopamine into norepinephrine. Here we systematically investigated DBH polymorphisms associated with enzymatic activity as well as autonomic and blood pressure (BP)/disease phenotypes in vivo. Methods and results Seventy genetic variants were discovered at the locus; across ethnicities, much of the promoter was spanned by a 5 haplotype block, with a larger block spanning the promoter in whites than blacks. DBH secretion was predicted by genetic variants in the DBH promoter, rather than the amino acid coding region. The C allele of common promoter variant C-970T increased plasma DBH activity, epinephrine excretion, the heritable change in BP during environmental stress in twin pairs, and also predicted higher basal BP in three independent populations. Mutagenesis and expression studies with isolated/transfected DBH promoter/luciferase reporters in chromaffin cells indicated that variant C-970T was functional. C-970T partially disrupted consensus transcriptional motifs for n-MYC and MEF-2, and this variant affected not only basal expression, but also the response to exogenous/co-transfected n-MYC or MEF-2; during chromatin immunoprecipitation, these two endogenous factors interacted with the motif. Conclusions These results suggest that common DBH promoter variant C-970T plays a role in the pathogenesis of human essential hypertension: common genetic variation in the DBH promoter region seems to initiate a cascade of biochemical and physiological changes eventuating in alterations of basal BP. These observations suggest new molecular strategies for probing the pathophysiology, risk, and rational treatment of systemic hypertension.


Journal of Biological Chemistry | 2010

Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells

Maïté Courel; Alejandro Soler-Jover; Juan L. Rodriguez-Flores; Sushil K. Mahata; Salah Elias; Maité Montero-Hadjadje; Youssef Anouar; Richard J. Giuly; Daniel T. O'Connor; Laurent Taupenot

Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.


Kidney International | 2008

Common genetic variants in the chromogranin A promoter alter autonomic activity and blood pressure

Yuqing Chen; Fangwen Rao; Juan L. Rodriguez-Flores; Nitish R. Mahapatra; Manjula Mahata; Gen Wen; Rany M. Salem; Pei-an Betty Shih; Madhusudan Das; Nicholas J. Schork; Michael G. Ziegler; Bruce A. Hamilton; Sushil K. Mahata; Daniel T. O'Connor

Chromogranin A (CHGA) is stored and released from the same secretory vesicles that contain catecholamines in chromaffin cells and noradrenergic neurons. We had previously identified common genetic variants at the CHGA locus in several human populations. Here we focus on whether inter-individual variants in the promoter region are of physiological significance. A common haplotype, CGATA (Hap-B), blunted the blood pressure response to cold stress and the effect exhibited molecular heterosis with the greatest blood pressure change found in Hap-A/Hap-B heterozygotes. Homozygosity for three minor alleles with peak effects within the haplotype predicted lower stress-induced blood pressure changes. The G-462A variant predicted resting blood pressure in the population with higher pressures occurring in heterozygotes (heterosis). Using cells transfected with CHGA promoter-luciferase reporter constructs, the Hap-B haplotype had decreased luciferase expression compared to the TTGTC (Hap-A) haplotype under both basal conditions and after activation by pre-ganglionic stimuli. The G-462A variant altered a COUP-TF transcriptional control motif. The two alleles in transfected promoters differed in basal activity and in the responses to COUP-II-TF transactivation and to retinoic acid. In vitro findings of molecular heterosis were also noted with the transfected CHGA promoter wherein the diploid combination of the two G-462A alleles gave rise to higher luciferase expression than either allele in isolation. Our results suggest that common genetic variants in the CHGA promoter may regulate heritable changes in blood pressure.

Collaboration


Dive into the Juan L. Rodriguez-Flores's collaboration.

Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge