Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan M. Taboas is active.

Publication


Featured researches published by Juan M. Taboas.


Stem Cell Research & Therapy | 2010

Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

Casey L. Korecki; Juan M. Taboas; Rocky S. Tuan; James C. Iatridis

IntroductionMesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct.MethodsHuman MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)).ResultsSignificantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed.ConclusionsTogether, results suggest NCCM stimulates mesenchymal stem cell differentiation toward a potentially NP-like phenotype with some characteristics of the developing IVD.


Matrix Biology | 2012

Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma.

John M. Norian; C.M. Owen; Juan M. Taboas; Casey L. Korecki; Rocky S. Tuan; M. Malik; William H. Catherino; James H. Segars

Leiomyoma are common tumors arising within the uterus that feature excessive deposition of a stiff, disordered extracellular matrix (ECM). Mechanical stress is a critical determinant of excessive ECM deposition and increased mechanical stress has been shown to be involved in tumorigenesis. Here we tested the viscoelastic properties of leiomyoma and characterized dynamic and static mechanical signaling in leiomyoma cells using three approaches, including measurement of active RhoA. We found that the peak strain and pseudo-dynamic modulus of leiomyoma tissue was significantly increased relative to matched myometrium. In addition, leiomyoma cells demonstrated an attenuated response to applied cyclic uniaxial strain and to variation in substrate stiffness, relative to myometrial cells. However, on a flexible pronectin-coated silicone substrate, basal levels and lysophosphatidic acid-stimulated levels of activated RhoA were similar between leiomyoma and myometrial cells. In contrast, leiomyoma cells plated on a rigid polystyrene substrate had elevated levels of active RhoA, compared to myometrial cells. The results indicate that viscoelastic properties of the ECM of leiomyoma contribute significantly to the tumors inherent stiffness and that leiomyoma cells have an attenuated sensitivity to mechanical cues. The findings suggest there may be a fundamental alteration in the communication between the external mechanical environment (extracellular forces) and reorganization of the actin cytoskeleton mediated by RhoA in leiomyoma cells. Additional research will be needed to elucidate the mechanism(s) responsible for the attenuated mechanical signaling in leiomyoma cells.


Journal of Materials Science: Materials in Medicine | 2010

Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications

Eiji Saito; Heesuk Kang; Juan M. Taboas; Alisha Diggs; Colleen L. Flanagan; Scott J. Hollister

The present study utilizes image-based computational methods and indirect solid freeform fabrication (SFF) technique to design and fabricate porous scaffolds, and then computationally estimates their elastic modulus and yield stress with experimental validation. 50:50 Poly (lactide-co-glycolide acid) (50:50 PLGA) porous scaffolds were designed using an image-based design technique, fabricated using indirect SFF technique, and characterized using micro-computed tomography (μ-CT) and mechanical testing. μ-CT data was further used to non-destructively predict the scaffold elastic moduli and yield stress using a voxel-based finite element (FE) method, a technique that could find application in eventual scaffold quality control. μ-CT data analysis confirmed that the fabricated scaffolds had controlled pore sizes, orthogonally interconnected pores and porosities which were identical to those of the designed files. Mechanical tests revealed that the compressive modulus and yield stresses were in the range of human trabecular bone. The results of FE analysis showed potential stress concentrations inside of the fabricated scaffold due to fabrication defects. Furthermore, the predicted moduli and yield stresses of the FE analysis showed strong correlations with those of the experiments. In the present study, we successfully fabricated scaffolds with designed architectures as well as predicted their mechanical properties in a nondestructive manner.


Cartilage | 2013

Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

Peter G. Alexander; Yingjie Song; Juan M. Taboas; Faye H. Chen; Gary M. Melvin; Paul A. Manner; Rocky S. Tuan

Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration.


Osteoarthritis and Cartilage | 2011

PTHrP Overexpression Partially Inhibits a Mechanical Strain- Induced Arthritic Phenotype in Chondrocytes

Dean Wang; Juan M. Taboas; Rocky S. Tuan

OBJECTIVE Cell-based tissue engineering strategies are currently in clinical use and continue to be developed at a rapid pace for the repair of cartilage defects. Regardless of the repair methodology, chondrocytes within newly regenerated cartilage remain susceptible to the abnormal inflammatory and mechanical environments that underlie osteoarthritic disease, likely compromising the implants integration, function, and longevity. The present study investigates the use of parathyroid hormone-related peptide (PTHrP) overexpression for chondroprotection. DESIGN Bovine articular chondrocytes were transfected with human PTHrP (hPTHrP) constructs (1-141 or 1-173) and subjected to injurious cyclic tensile strain (CTS; 0.5 Hz and 16% elongation) for 48 h. mRNA expression of matrix remodeling, inflammatory signaling, hypertrophic, and apoptotic genes were examined with real-time reverse transcription polymerase chain reaction. Nitric oxide (NO) and prostaglandin E₂ (PGE₂) production were measured using the Griess assay and enzyme immunoassay (EIA), respectively. RESULTS CTS-induced an arthritic phenotype in articular chondrocytes as indicated by increased gene expression of collagenases and aggrecanases and increased production of NO and PGE₂. Additionally, CTS increased collagen type X (Col10a1) mRNA expression, whereas overexpression of either hPTHrP isoform inhibited CTS-induced Col10a1 gene expression. However, hPTHrP 1-141 augmented CTS-induced NO and PGE₂ production, and neither hPTHrP isoform had any significant effect on apoptotic genes. CONCLUSIONS Our results suggest that chondrocytes overexpressing PTHrP resist mechanical strain-induced hypertrophic-like changes. Therapeutic PTHrP gene transfer may be considered for chondroprotection applications in newly regenerated cartilage.


Journal of Molecular and Cellular Cardiology | 2012

EBP50 Promotes Focal Adhesion Turnover and Vascular Smooth Muscle Cells Migration

Gyun Jee Song; Kristen L. Leslie; Stacey Barrick; Sylvain Bougoin; Juan M. Taboas; Alessandro Bisello

The ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a PDZ-containing scaffolding protein that regulates a variety of physiological functions. In the vasculature, EBP50 promotes neointima formation following arterial injury. In this study the role of EBP50 on vascular smooth muscle cell (VSMC) migration was characterized. The spreading and motility of primary VSMC isolated from EBP50 knockout (KO) mice were significantly reduced compared to wild-type (WT) cells. EBP50-null VSMC had fewer and larger focal adhesions than wild-type cells. Assembly and disassembly of focal adhesion-assessed by live-cell total internal reflection fluorescence imaging-in response to epidermal growth factor (EGF) were significantly reduced in KO cells. Immunoprecipitation experiments showed that EBP50 interacts with EGF receptor via the PDZ2 domain and with focal adhesion kinase (FAK) via the C-terminal ERM domain. EBP50 promoted the formation of a complex containing both EGF receptor and FAK. Phosphorylation of Tyr-925 of FAK in response to EGF was significantly reduced in KO cell compared to WT cells. The residence time of FAK in focal adhesions-determined by fluorescence recovery after photobleaching-was increased in WT cells. Collectively, these studies indicate that EBP50, by scaffolding EGF receptor and FAK, facilitates activation of FAK, focal adhesion turnover, and migration of VSMC.


Journal of Visualized Experiments | 2016

FRET Imaging in Three-dimensional Hydrogels.

Amalie E. Donius; Sylvain Bougoin; Juan M. Taboas

Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination.


Orthodontics & Craniofacial Research | 2005

Engineering craniofacial scaffolds

Scott J. Hollister; Chia-Ying Lin; Eiji Saito; Schek Rd; Juan M. Taboas; J. M. Williams; Brock Partee; Colleen L. Flanagan; Alisha Diggs; E. N. Wilke; G.H. van Lenthe; Ralph Müller; Tobias Wirtz; Suman Das; S Feinberg; Paul H. Krebsbach


Joint Bone Spine | 2010

Update in cartilage bio-engineering

Odile Gabay; Christelle Sanchez; Juan M. Taboas


Revue du Rhumatisme | 2010

Bio-ingénierie du cartilage

Odile Gabay; Christelle Sanchez; Juan M. Taboas

Collaboration


Dive into the Juan M. Taboas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Feinberg

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tm Chu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Eiji Saito

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Rocky S. Tuan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Odile Gabay

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge