Juan M. Vieites
University of Vigo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan M. Vieites.
Toxicology in Vitro | 2002
F. Leira; C Alvarez; Juan M. Vieites; M.R. Vieytes; Luis M. Botana
Apoptotic changes induced by okadaic acid and yessotoxin in BE(2)-M17 neuroblastoma cells have been evaluated and quantified by combining classical methods and fast and sensitive fluorimetric microplate assays. The phosphatase inhibitor okadaic acid induced rapid time- and dose-dependent apoptotic changes in this cell line, which were evident after 1h at concentrations equal or higher than 500 nM. Decreased mitochondrial membrane potential by okadaic acid (IC(50)=350 nM at 1h) was followed by cell detachment (IC(50)=400 nM at 1h), changes in total nucleic acids content (50% of controls after 1h with 1000 nM okadaic acid), caspase-3 activation (3- to 4-fold increase at 6h) and increased Annexin-V binding (1.5-fold at 6h). Yessotoxin induced similar changes in BE(2)-M17 cells, although significant differences were found in the time-course and degree of apoptotic events induced by this phycotoxin, indicating a lower potency for yessotoxin when compared with okadaic acid. This is the first report on apoptogenic activity of yessotoxin.
Cellular Signalling | 2002
Yolanda Román; Amparo Alfonso; M. Carmen Louzao; Laura A de la Rosa; F. Leira; Juan M. Vieites; Mercedes R. Vieytes; Katsuya Ofuji; Masayuki Satake; Takeshi Yasumoto; Luis M. Botana
This paper reports on potential cellular targets of azaspiracid-1 (AZ-1), a new phycotoxin that causes diarrhoeic and neurotoxic symptoms and whose mechanism of action is unknown. In excitable neuroblastoma cells, the systems studied were membrane potential, F-actin levels and mitochondrial membrane potential. AZ-1 does not modify mitochondrial activity but decreases F-actin concentration. These results indicate that the toxin does not have an apoptotic effect but uses actin for some of its effects. Therefore, cytoskeleton seems to be an important cellular target for AZ-1 effect. AZ-1 does not induce any modification in membrane potential, which does not support for neurotoxic effects. In human lymphocytes, cAMP, cytosolic calcium and cytosolic pH (pHi) levels were also studied. AZ-1 increases cytosolic calcium and cAMP levels and does not affect pHi (alkalinization). Cytosolic calcium increase seems to be dependent on both the release of calcium from intracellular Ca(2+) pools and the influx from extracellular media through Ni(2+)-blockable channels. AZ-1-induced Ca(2+) increase is negatively modulated by protein kinase C (PKC) activation, protein phosphatases 1 and 2A (PP1 and PP2A) inhibition and cAMP increasing agents. The effect of AZ-1 in cAMP is not extracellularly Ca(2+) dependent and insensitive to okadaic acid (OA).
Journal of Agricultural and Food Chemistry | 2010
Beatriz Herrero; María Madriñán; Juan M. Vieites; Montserrat Espiñeira
This work describes the development of a real-time polymerase chain reaction (RT-PCR) system for the detection and identification of Atlantic cod (Gadus morhua). Among the advantages of this technique, it is worth highlighting that this is reliable in terms of specificity and sensitivity. The TaqMan real-time PCR is the simplest, fastest testing process and has the highest potential for automation, therefore representing the currently most suitable method for screening, allowing the detection of fraudulent or unintentional mislabeling of this species. The method can be applied to all kinds of products, fresh, frozen, and processed products, including those undergoing intensive processes of transformation. The developed methodology using specific primer-probe set was validated and further applied to 40 commercial samples labeled as cod in order to determinate if the species used for their manufacturing corresponded to G. morhua, detecting 20% that were incorrectly labeled. A C(t) value of about 19 was obtained when G. morhua was present. In samples with a species mixture, all samples that had a fluorescence signal were positive (C(t) < 30) for the presence of G. morhua by conventional end-point RT-PCR, and the estimated limit of detection for these type of samples was of 20 pg of DNA. The methodology herein developed is useful to check the fulfilment of labeling regulations for seafood products and verify the correct traceability in commercial trade and for fisheries control.
Journal of Agricultural and Food Chemistry | 2008
Montserrat Espiñeira; Nerea González-Lavín; Juan M. Vieites; Francisco J. Santaclara
Lophius represents the most important genus of the family Lophiidae from a commercial point of view. The main marketing formats of the species included in this genus are tails and cheeks, making impossible the species identification on the basis of their morphological characters. In the present study, two methods based on the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and phylogenetic analysis of DNA sequences [forensically informative nucleotide sequencing (FINS)] were developed to differentiate the seven species contained in the genus Lophius. In both cases, the molecular marker studied was the cytochrome oxidase subunit I gene (COI). The RFLP analysis of the PCR products digested with the endonuclease Mbo I generated species-specific restriction profiles, and the phylogenetic analysis showing a neighbor-joining tree with independent nodes was strongly supported for all of the studied species. These methods were applied to 40 commercial samples, allowing us to detect the samples incorrectly labeled. The fraudulent labeling ratio was higher in processed products (68.75%) than whole fish (31.25%). The species subjected to mislabeling were L. budegassa (68.75%), L. vomerinus (18.75%), and L. piscatorius (12.5%). Therefore, both methodologies can be independently used to authenticate the species belonging to the genus Lophius, being useful to check the fulfillment of labeling regulations of seafood products and to verify the correct traceability of commercial trade and the control of fisheries.
Toxicology in Vitro | 2001
F. Leira; C Alvarez; Juan M. Vieites; M.R. Vieytes; Luis M. Botana
The diarrhogenic activity of the marine toxin okadaic acid (OA) has been associated to its actin-disrupting effect, which could reflect the loosening of tight junctions in vivo. In this report, we present results obtained using a fluorimetric microplate assay for quantitative measurements of OA-induced changes on F-actin pools in BE(2)-M17 cells. The proposed method shows important advantages over classical methods in terms of rapidity, sensitivity (less than 5000 cells per well) and reproducibility, thus providing a very useful tool for studying F-actin levels in living cells. Results obtained demonstrate a time- and dose-dependent decrease of F-actin pools (IC(50)=100 nM at 1 h) in OA-treated cells, which was partly counteracted by TPA, H89, forskolin, wortmannin, ionomycin and orthovanadate at early stages, but remained unaffected after 24 h of incubation. Cells exposed for 1 h to 1 nM OA showed a slight increase of F-actin pools (1.5-fold), which was blocked by genistein and lavendustin A, thus suggesting a role for tyrosine kinases-dependent pathways in OA-induced polymerization at low concentrations. These results suggest direct interactions of Ser/Thr protein phosphatases with actin-binding proteins in the regulation of actin polymerization, thus indicating that disruption of cytoskeletal structure may be a key mechanism of OA-induced diarrhea.
Journal of Agricultural and Food Chemistry | 2008
Montserrat Espiñeira; Nerea González-Lavín; Juan M. Vieites; Francisco J. Santaclara
In the present study a method for genetic identification of flatfish species was developed. The technique is based on DNA sequencing of amplified DNA by PCR and subsequent phylogenetic analysis ( FINS). A phylogenetic tree using the cytochrome oxidase subunit I (COI) was constructed and the bootstrap values calculated. The mentioned technique allows the genetic identification of more than 50 flatfish species in fresh, frozen, and precooked products. This analytical system was validated and subsequently applied to 30 commercial samples, obtaining 13 that were incorrectly labeled (43%). Four of the mislabeled samples were whole fish (31%), and nine were fillets (69%). The species with the higher rate of incorrect labeling were Pleuronectes platessa (17%) and Solea solea (10%). Other species incorrectly labeled were Hipoglossus hipoglossus (7%), Reinharditus hippoglossoides, Limanda ferruginea, and Microstomus kitt (3% each species). Therefore, this molecular tool is appropriate to clarify questions related with the correct labeling of commercial products, the traceability of raw materials, and the control of imported flatfish, and also can be applied to questions linked to the control of fisheries.
Analytical Biochemistry | 2003
F. Leira; C Alvarez; Ana G. Cabado; Juan M. Vieites; M.R. Vieytes; Luis M. Botana
A new cytotoxicity assay for detection and quantitation of diarrhetic shellfish toxins (DSP) is presented. This assay is based upon fluorimetric determination of F-actin depolymerization induced by okadaic acid (OA)-class compounds in the BE(2)-M17 neuroblastoma cell line. No interferences were observed with other marine toxins such as saxitoxin, domoic acid, or yessotoxin, thus indicating a good specificity of the assay as expected by the direct relationship between protein phosphatase inhibition and cytoskeletal changes. The proposed method is rapid (<2h) and shows a linear response in the range of 50-300 nM OA. The detection limit of the assay for crude methanolic extracts of bivalves lies between 0.2 and 1.0 microg OA per gram of digestive glands, depending on the type of samples (fresh or canned), thus being similar to that of the mouse bioassay. The performance of this assay has been evaluated by comparative analysis of 32 toxic mussel samples by the F-actin assay, mouse bioassay, HPLC and PP2A inhibition assay. Results obtained by the F-actin method showed no differences with HPLC and significant correlation with PP2A inhibition assay (r(2)=0.71). No false negative results were obtained with this new cell assay, which also showed optimum reproducibility.
Toxicon | 2010
Elina Garet; A.G. Cabado; Juan M. Vieites; África González-Fernández
Several recombinant antibodies against one of the most potent marine toxins, Palytoxin (PlTX), were obtained using two naive human semi-synthetic phage display libraries (Tomlinson I and J) as an effective method for generating specific anti-toxin single-chain variable fragment (scFv) antibodies. After four rounds of panning and selection on free palytoxin adsorbed immunotubes, individual clones were isolated, sequenced and characterized by Enzyme-Linked Immunosorbent Assay (ELISA). Four phage-antibody clones specifically recognized the toxin. A competitive ELISA assay was optimized with one of these phage antibodies giving a very reproducible standard curve with a linear regression (R(2)=0.9945), showing a working range of 0.0005-500ngmL(-1). Several spiked shellfish samples were analysed by competitive ELISA to determine the accuracy of the assay, with a mean recovery rate of 90%. This study demonstrates that phage display libraries provide a valuable system for the easy and rapid generation of specific antibody fragments directed against difficult antigenic targets, such as free small molecules. Large-scale, low-cost production of anti-palytoxin scFv antibodies in Escherichia coli (E. coli) is an exciting prospect for the development of rapid and simple detection methods. Our results suggest that anti-palytoxin phage antibodies could be a valuable tool with competitive ELISA to detect palytoxin in natural shellfish samples.
Journal of Chromatography A | 2001
José Carlos González; Mercedes R. Vieytes; Ana M. Botana; Juan M. Vieites; Luis M. Botana
The solubility of solids and liquids in supercritical CO2 with added entrainers was modeled with a modified version of the equation of Chrastil to include the effect of entrainers. By considering the formation of the solute-entrainer-solvent complexes an equation is obtained which predicts an exponential increase of solubility with fluid density and/or entrainer concentration. The correlating model was tested by non-linear regression through a computerized iterative process for several systems where an entrainer was present. Four experimental parameters are easily regressed from experimental data, hence the corresponding properties of components such as chemical potentials or critical parameters are not needed. Instead of its simplicity, this thermodynamical model provided a good correlation of the solubility enhancement in the presence of entrainer effect.
Food Chemistry | 2011
Laura Rodríguez-Turienzo; Angel Cobos; Vanesa Moreno; Amado Caride; Juan M. Vieites; Olga Díaz
The effects of different whey protein concentrate coating formulations (with or without glycerol or sorbitol in two proportions) on frozen Atlantic salmon quality parameters were evaluated. The influence of the moment of coating application (before or after freezing) was also studied. The coating application after freezing increased the thaw yield, decreased the drip loss, and modified colour parameters of frozen and thawed fillets, in comparison with application before freezing. The moment of coating also influenced the colour of cooked fish fillets. The type of plasticiser affects the colour of thawed and cooked samples, but not the colour of frozen samples. The protein coatings delayed lipid oxidation of salmon fillets, providing better protection against it than water glazing, and this effect was more pronounced when glycerol instead of sorbitol was used in the coating formulation. WPC+glycerol (1:1) coating was the best for frozen Atlantic salmon protection. The sensory properties of salmon fillets were not modified by the use of this coating.