Judith A. Appleton
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judith A. Appleton.
Nature Genetics | 2011
Makedonka Mitreva; Douglas P. Jasmer; Dante S. Zarlenga; Zhengyuan Wang; Sahar Abubucker; John Martin; Christina M. Taylor; Yong Yin; Lucinda Fulton; Patrick Minx; Shiaw-Pyng Yang; Wesley C. Warren; Robert S. Fulton; Veena Bhonagiri; Xu Zhang; Kym Hallsworth-Pepin; Sandra W. Clifton; James P. McCarter; Judith A. Appleton; Elaine R. Mardis; Richard Wilson
Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map–assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.
Journal of Immunology | 2007
Daniel P. Beiting; Lucille F. Gagliardo; Matthias Hesse; Susan K. Bliss; Diana Meskill; Judith A. Appleton
We previously demonstrated that IL-10 is critical in the control of acute inflammation during development of Trichinella spiralis in the muscle. In this study, we use gene-targeted knockout mice, adoptive transfer of specific T cell populations, and in vivo Ab treatments to determine the mechanisms by which inflammation is controlled and effector T cell responses are moderated during muscle infection. We report that CD4+CD25− effector T cells, rather than CD4+CD25+ regulatory T cells, suppress inflammation by an IL-10-dependent mechanism that limits IFN-γ production and local inducible NO synthase induction. Conversely, we show that depletion of regulatory T cells during infection results in exaggerated Th2 responses. Finally, we provide evidence that, in the absence of IL-10, TGF-β participates in control of local inflammation in infected muscle and promotes parasite survival.
Journal of Immunology | 2009
Valeria Fabre; Daniel P. Beiting; Susan K. Bliss; Nebiat G. Gebreselassie; Lucille F. Gagliardo; Nancy A. Lee; James J. Lee; Judith A. Appleton
Immune responses elicited by parasitic worms share many features with those of chronic allergy. Eosinophils contribute to the inflammation that occurs in both types of disease, and helminths can be damaged or killed by toxic products released by eosinophils in vitro. Such observations inform the widely held view that eosinophils protect the host against parasitic worms. The mouse is a natural host for Trichinella spiralis, a worm that establishes chronic infection in skeletal muscle. We tested the influence of eosinophils on T. spiralis infection in two mouse strains in which the eosinophil lineage is ablated. Eosinophils were prominent in infiltrates surrounding infected muscle cells of wild-type mice; however, in the absence of eosinophils T. spiralis muscle larvae died in large numbers. Parasite death correlated with enhanced IFN-γ and decreased IL-4 production. Larval survival improved when mice were treated with inhibitors of inducible NO synthase, implicating the NO pathway in parasite clearance. Thus, the long-standing paradigm of eosinophil toxicity in nematode infection requires reevaluation, as our results suggest that eosinophils may influence the immune response in a manner that would sustain chronic infection and insure worm survival in the host population. Such a mechanism may be deployed by other parasitic worms that depend upon chronic infection for survival.
Journal of Immunology | 2012
Nebiat G. Gebreselassie; Andrew R. Moorhead; Valeria Fabre; Lucille F. Gagliardo; Nancy A. Lee; James J. Lee; Judith A. Appleton
Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4+ T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80+CD11b+Ly6C+ macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.
Infection and Immunity | 2000
Catherine S. McVay; Peter Bracken; Lucille F. Gagliardo; Judith A. Appleton
ABSTRACT Infection with the parasitic nematode Trichinella spiralis is initiated when the L1 larva invades host intestinal epithelial cells. Monoclonal antibodies specific for glycans on the larval surface and secreted glycoproteins protect the intestine against infection. Protective antibodies recognize tyvelose which caps the target glycan. In this study, we used an in vitro model of invasion to further examine the mechanism(s) by which tyvelose-specific antibodies protect epithelial cells against T. spiralis. Using cell lines that vary in susceptibility to invasion, we confirmed and clarified the results of our in vivo studies by documenting three modes of interference: exclusion of larvae from cells, encumbrance of larvae as they migrated within epithelial monolayers, and inhibition of parasite development. Excluded larvae bear cephalic caps (C. S. McVay et al., Infect. Immun. 66:1941–1945, 1998) of immune complexes that may physically block invasion or may interfere with sensory reception. Monovalent Fab fragments prepared from a tyvelose-specific antibody also excluded larvae from cells, demonstrating that antibody binding can inhibit the parasite in the absence of antigen aggregation and cap formation. In contrast, encumbered larvae caused extensive damage to the monolayer yet were not successful in establishing a niche, as reflected by their failure to molt. These results show that antibodies to tyvelose exhibit multiple modes of inhibitory activity, further implicating tyvelose-bearing glycoproteins as mediators of invasion and niche establishment by T. spiralis.
Molecular and Biochemical Parasitology | 2002
Fernanda Romaris; Simon J. North; Lucille F. Gagliardo; Barbara A. Butcher; Kaya Ghosh; Daniel P. Beiting; Maria Panico; Prema Arasu; Anne Dell; Howard R. Morris; Judith A. Appleton
Trichinella spiralis first-stage larvae infect susceptible hosts by invading epithelial cells that line the small intestine. During this process the larva disgorges several glycoproteins that bear an unusual, highly antigenic sugar moiety, tyvelose (3,6-dideoxy arabinohexose). Monoclonal antibodies specific for tyvelose protect the intestine against infection, implicating tyvelose-bearing glycoproteins as mediators of invasion and niche establishment in the intestinal epithelium. In order to investigate these glycoproteins at the molecular level, we first prepared monoclonal anti-peptide antibodies. The antibodies bind a family of glycoproteins that are present in excretory-secretory products of first-stage larvae and are delivered to epithelial cells during invasion by T. spiralis. The major species present in an affinity purified fraction of crude T. spiralis antigens were subjected to tryptic peptide digestion. De novo amino acid sequencing of the peptides using Q-TOF tandem mass spectrometry, in combination with database searches and antibody screening of an L1 cDNA library, showed that the glycoproteins are variably glycosylated homologues of the serine protease family.
Infection and Immunity | 2002
Lucille F. Gagliardo; Catherine S. McVay; Judith A. Appleton
ABSTRACT Trichinella spiralis is an obligate parasite of animals that has an unusual intracellular life cycle. Investigation of parasitism at the cellular and molecular levels has been challenging because of a shortage of tools for in vitro cultivation of T. spiralis. We have found that T. spiralis larvae molt, ecdyse, develop to adulthood, and reproduce when they are inoculated onto cultured intestinal epithelial cells. Initially, larvae invade and migrate through cells in a monolayer (T. ManWarren, L. Gagliardo, J. Geyer, C. McVay, S. Pearce-Kelling, and J. Appleton, Infect. Immun. 65:4806-4812, 1997). During prolonged culture in Caco-2 epithelial cells, L1 larvae molted and ecdysed with efficiencies as high as 50%. Molting and ecdysis in vitro required entry of the parasite into cells; conditions that prevented entry into cells also prevented ecdysis. When larvae were inoculated at a low density and cultured for 5 to 9 days, as many as 50% of the larvae developed to adult stages. Low numbers of mature male worms with copulatory appendages were observed in these cultures. The majority of worms that survived for five or more days were unfertilized females. Low-density cultures supported development of female worms with embryos at rates of 4 to 5%. These results show that the intestinal life cycle of T. spiralis can be supported entirely by host epithelial cells. Our model should allow more detailed investigation of intracellular parasitism by T. spiralis.
Infection and Immunity | 2004
Daniel P. Beiting; Susan K. Bliss; Donald H. Schlafer; Victoria L. Roberts; Judith A. Appleton
ABSTRACT The aim of this study was to characterize cellular responses to muscle-stage Trichinella spiralis. From its intracellular habitat in muscle, T. spiralis secretes potent glycoprotein antigens that elicit a strong systemic host immune response. Despite the magnitude and prolonged nature of this response, nurse cells are rarely destroyed by infiltrating cells. We tested the hypothesis that the anti-inflammatory cytokine interleukin-10 (IL-10) moderates cellular responses to muscle-stage parasites. Trichinella larvae colonize the diaphragm in large numbers, prompting us to evaluate regional responses in body cavities in addition to local responses in muscle. Mice deficient in IL-10 demonstrated an exaggerated inflammatory response around nurse cells and in the pleural cavity. The effect of IL-10 was most evident 20 days following muscle infection. The increased intensity of the response in IL-10-deficient mice did not affect parasite establishment or survival. Between 20 and 50 days postinfection, the inflammatory response was diminished in both wild-type and IL-10-deficient mice. Muscle infection also elicited an antibody response, characterized initially by mixed isotypes directed at somatic larval antigens and changing to an immunoglobulin G1-dominated response directed at tyvelose-bearing excreted or secreted antigens. We conclude that IL-10 limits local and regional inflammation during the early stages of muscle infection but that chronic inflammation is controlled by an IL-10-independent mechanism that is coincident with a Th2 response.
Clinical and Vaccine Immunology | 2005
L. P. Daley; Lucille F. Gagliardo; M. S. Duffy; Mary C. Smith; Judith A. Appleton
ABSTRACT Of the three immunoglobulin G (IgG) isotypes described to occur in camelids, IgG2 and IgG3 are distinct in that they do not incorporate light chains. These heavy-chain antibodies (HCAbs) constitute approximately 50% of the IgG in llama serum and as much as 75% of the IgG in camel serum. We have produced isotype-specific mouse monoclonal antibodies (MAbs) in order to investigate the roles of HCAbs in camelid immunity. Seventeen stable hybridomas were cloned, and three MAbs that were specific for epitopes on the γ chains of llama IgG1, IgG2, or IgG3 were characterized in detail. Affinity chromatography revealed that each MAb bound its isotype in solution in llama serum. The antibodies bound to the corresponding alpaca IgGs, to guanaco IgG1 and IgG2, and to camel IgG1. Interestingly, anti-IgG2 MAbs bound three heavy-chain species in llama serum, confirming the presence of three IgG2 subisotypes. Two IgG2 subisotypes were detected in alpaca and guanaco sera. The MAbs detected llama serum IgGs when they were bound to antigen in enzyme-linked immunosorbent assays and were used to discern among isotypes induced during infection with a parasitic nematode. Diseased animals, infected with Parelaphostrongylus tenuis, did not produce antigen-specific HCAbs; rather, they produced the conventional isotype, IgG1, exclusively. Our data document the utility of these MAbs in functional and physiologic investigations of the immune systems of New World camelids.
Journal of Immunology | 2014
Lu Huang; Nebiat G. Gebreselassie; Lucille F. Gagliardo; Maura C. Ruyechan; Nancy A. Lee; James J. Lee; Judith A. Appleton
Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eosinophils protect intracellular, muscle-stage Trichinella spiralis larvae against NO-mediated killing. Our findings indicate that eosinophils are specifically recruited to sites of infection at the earliest stage of muscle infection, consistent with a local response to injury. Early recruitment is essential for larval survival. By producing IL-10 at the initiation of infection, eosinophils expand IL-10+ myeloid dendritic cells and CD4+ IL-10+ T lymphocytes that inhibit inducible NO synthase (iNOS) expression and protect intracellular larvae. The results document a novel immunoregulatory function of eosinophils in helminth infection, in which eosinophil-derived IL-10 drives immune responses that eventually limit local NO production. In this way, the parasite co-opts an immune response in a way that enhances its own survival.