Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith A. Scoble is active.

Publication


Featured researches published by Judith A. Scoble.


Journal of Biological Chemistry | 2013

Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

Sameer A. Greenall; John D. Bentley; Lesley A. Pearce; Judith A. Scoble; Lindsay G. Sparrow; Nicola A. Bartone; Xiaowen Xiao; Robert C. Baxter; Leah J. Cosgrove; Timothy E. Adams

Background: Aberrant processing of the pro-IGF-II transcript produces pro- and big-IGF-II, which are secreted in a range of cancers. Results: These induce potent receptor activation and cell proliferation and retard ternary complex formation with ALS and IGFBP-3 and -5. Conclusion: They elicit unique biological responses that can be completely different from IGF-II. Significance: Understanding the effects induced by these individual isoforms is crucial to elucidate their role in tumorigenesis. Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.


Journal of Immunological Methods | 2016

A chemiluminescent sandwich ELISA enhancement method using a chromium (III) coordination complex.

Nicholas G. Welch; Christopher D. Easton; Judith A. Scoble; Charlotte C. Williams; Paul J. Pigram; Benjamin W. Muir

Enzyme linked immunosorbent assays (ELISAs) are employed for the detection and quantification of antigens from biological sources such as serum and cell culture media. A sandwich ELISA is dependent on the immobilization of a capture antibody, or antibody fragment, and the effective presentation of its antigen binding sites. Immobilization to common microtitre plates relies on non-specific interactions of the capture protein with a surface that may result in unfavourable orientation and conformation, compromising ELISA signal strength and performance. We have developed a wet chemical surface activation method that utilizes a chromium (III) solution to immobilize native, non-tagged, capture antibodies on commercially available microtitre plates. Antibodies captured by this method had increased antigen binding, particularly from dilute antibody solutions, relative to antibodies adsorbed directly to the plate surface. A variety of monoclonal antibodies with complementary antigen systems were used to demonstrate improvements in ELISA signal and reproducibility. The simplicity and versatility of this method should enable ELISA enhancement in assays where chemiluminescence is used as the detection method.


Australian Journal of Chemistry | 2011

Cancer-targeting Antibody–Drug Conjugates: Site-specific Conjugation of Doxorubicin to Anti-EGFR 528 Fab' through a Polyethylene Glycol Linker

Lisa P. T. Hong; Judith A. Scoble; Larissa Doughty; Gregory Coia; Charlotte C. Williams

Antibody–drug conjugates have been prepared to examine the effect that attaching small-molecule drugs to an antibody fragment has on antibody activity. The anticancer drug doxorubicin was covalently attached through a polyethylene glycol linker to a cancer-targeting, anti-epidermal growth factor receptor antibody fragment (Fab′). The reactivity of maleimide was compared with a substituted maleimide derivative (citraconimide) in conjugation reactions with cysteine residues on a Fab′. Introduction of polyethylene glycol increased aqueous solubility of the cytotoxic drug, which led to an improvement in overall yield of the conjugation reaction with the antibody fragment. Antibody–drug conjugates prepared retained activity of the parent antibody, as determined by antigen binding experiments measured by surface plasmon resonance.


Biointerphases | 2016

Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance

Nicholas G. Welch; Robert M. T. Madiona; Christopher D. Easton; Judith A. Scoble; Robert Jones; Benjamin W. Muir; Paul J. Pigram

Ensuring the optimum orientation, conformation, and density of substrate-bound antibodies is critical for the success of sandwich enzyme-linked immunosorbent assays (ELISAs). In this work, the authors utilize a diethylene glycol dimethyl ether plasma polymer (DGpp) coating, functionalized with chromium within a 96 well plate for the enhanced immobilization of a capture antibody. For an equivalent amount of bound antibody, a tenfold improvement in the ELISA signal intensity is obtained on the DGpp after incubation with chromium, indicative of improved orientation on this surface. Time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS) and principal component analysis were used to probe the molecular species at the surface and showed ion fragments related to lysine, methionine, histidine, and arginine coupled to chromium indicating candidate antibody binding sites. A combined x-ray photoelectron spectroscopy and ToF-SIMS analysis provided a surface molecular characterization that demonstrates antibody binding via the chromium complex. The DGpp+Cr surface treatment holds great promise for improving the efficacy of ELISAs.


Protein Expression and Purification | 2015

Structural characterization by transmission electron microscopy and immunoreactivity of recombinant Hendra virus nucleocapsid protein expressed and purified from Escherichia coli

Lesley A. Pearce; Meng Yu; Lynne J. Waddington; Jennifer A. Barr; Judith A. Scoble; Gary Crameri; William J. McKinstry

Abstract Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay.


Ultrasound in Medicine and Biology | 2013

Quantitative Guidelines for the Prediction of Ultrasound Contrast Agent Destruction During Injection

Greg Threlfall; Hong Juan Wu; Katherine Li; Ben Aldham; Judith A. Scoble; Ilija D. Šutalo; Anna Raicevic; Luisa Pontes-Braz; Brian Lee; Michal Schneider-Kolsky; Andrew Ooi; Greg Coia; Richard Manasseh

Experiments and theory were undertaken on the destruction of ultrasound contrast agent microbubbles on needle injection, with the aim of predicting agent loss during in vivo studies. Agents were expelled through a variety of syringe and needle combinations, subjecting the microbubbles to a range of pressure drops. Imaging of the bubbles identified cases where bubbles were destroyed and the extent of destruction. Fluid-dynamic calculations determined the pressure drop for each syringe and needle combination. It was found that agent destruction occurred at a critical pressure drop that depended only on the type of microbubble. Protein-shelled microbubbles (sonicated bovine serum albumin) were virtually all destroyed above their critical pressure drop of 109 ± 7 kPa Two types of lipid-shelled microbubbles were found to have a pressure drop threshold above which more than 50% of the microbubbles were destroyed. The commercial lipid-shelled agent Definity was found to have a critical pressure drop for destruction of 230 ± 10 kPa; for a previously published lipid-shelled agent, this value was 150 ± 40 kPa. It is recommended that attention to the predictions of a simple formula could preclude unnecessary destruction of microbubble contrast agent during in vivo injections. This approach may also preclude undesirable release of drug or gene payloads in targeted microbubble therapies. Example values of appropriate injection rates for various agents and conditions are given.


Journal of Immunological Methods | 2017

Polypropylene microtitre plates modified with [Cr(OH)6]3 − for enhanced ELISA sensitivity

Nicholas G. Welch; Cedric J. Lebot; Christopher D. Easton; Judith A. Scoble; Paul J. Pigram; Benjamin W. Muir

Chromium solutions have been used as wet chemical modifiers for polymer microtitre plates used in improving immunoassay performance. However, polypropylene has been excluded from the list of potentially modifiable substrates (AnteoTechnologies, 2015). Here we show that untreated polypropylene microtitre plates can indeed be modified using a [Cr(OH)6]3- complex. Compared to unmodified polypropylene, the chromium modified surfaces demonstrate an up to 4-fold improvement in both assay sensitivity and signal intensity in an antigen capture ELISA. Atomic force microscope (AFM) images indicate that the chromium complex facilitates dispersion of the antibody, reducing aggregation.


Biointerphases | 2017

Determining the limit of detection of surface bound antibody

Robert M. T. Madiona; Nicholas G. Welch; Judith A. Scoble; Benjamin W. Muir; Paul J. Pigram

Determination of a limit of detection (LoD) for surface bound antibodies is crucial for the development and deployment of sensitive bioassays. The measurement of very low concentrations of surface bound antibodies is also important in the manufacturing of pharmaceutical products such as antibody-conjugated pharmaceuticals. Low concentrations are required to avoid an immune response from the target host. Enzyme-linked immunosorbent assay (ELISA), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to determine the LoD for the surface bound antibody (antiepidermal growth factor receptor antibody) on silicon substrates. Antibody solution concentrations between 10 μg/ml and 1 ng/ml and a control (antibody-free buffer solution) were employed, and the detection performance of each technique was compared. For this system, the ELISA LoD was 100 ng/ml and the XPS LoD was 1 μg/ml, corresponding to an estimated surface concentration of 49  ± 7 ng/cm2 using a 1 μg/ml solution. Due to the multivariate complexity of ToF-SIMS data, analysis was carried out using three different methods, peak ratio calculations, principal component analysis, and artificial neural network analysis. The use of multivariate analysis with this dataset offers an unbiased analytical approach based on the peaks selected from ToF-SIMS data. The results estimate a ToF-SIMS LoD between applied antibody concentrations of 10 and 100 ng/mL. For surface bound antibodies on a silicon substrate, the LoD is below an estimated surface concentration of 49 ng/cm2. The authors have determined the LoD for this system using ELISA, XPS, and ToF-SIMS with multivariate analyses, with ToF-SIMS offering an order of magnitude better detection over ELISA and 2 orders of magnitude better detection over XPS.


PLOS ONE | 2017

Sugar analog synthesis by in vitro biocatalytic cascade: a comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis

Carol J. Hartley; Nigel G. French; Judith A. Scoble; Charlotte C. Williams; Quentin I. Churches; Andrew R. Frazer; Matthew C. Taylor; Greg Coia; Gregory Simpson; Nicholas J. Turner; Colin Scott

Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.


Nanoscale | 2015

Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

Jiali Zhai; Judith A. Scoble; Nan Li; George O. Lovrecz; Lynne J. Waddington; Nhiem Tran; Benjamin W. Muir; Gregory Coia; Nigel Kirby; Calum J. Drummond; Xavier Mulet

Collaboration


Dive into the Judith A. Scoble's collaboration.

Top Co-Authors

Avatar

Benjamin W. Muir

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Nicholas G. Welch

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Easton

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Robert M. T. Madiona

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Charlotte C. Williams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Lynne J. Waddington

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Greg Coia

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gregory Coia

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge