Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith E. Schmid is active.

Publication


Featured researches published by Judith E. Schmid.


Journal of Molecular Histology | 2003

Methoxychlor-induced alterations in the histological expression of angiogenic factors in pituitary and uterus ∗

Jerome M. Goldman; Ashley S. Murr; Angela R. Buckalew; Judith E. Schmid; Barbara D. Abbott

Within the reproductive system, oestrogenic stimulation of uterine and pituitary tissue typically causes a proliferative response accompanied by an angiogenic induction of new blood vessels from existing ones, thereby providing nutrients and oxygen to the growing tissue. The pro-oestrogenic pesticide methoxychlor (MXC), however, has shown a differential effect on proliferative activity. An increase in uterine growth is present, while the pituitary undergoes a decrease in size, even though the effect is accompanied by a characteristic oestrogen-induced elevation in pituitary prolactin concentration. The focus of the current study was whether the observed differences in tissue growth between uterus and pituitary in response to MXC administration were paralleled by a corresponding disparity in the expression of those growth factors (members of the vascular endothelial growth factor (VEGF) and angiopoietin families and their receptors) that are involved in the angiogenic cascade. Ovariectomized adult Sprague–Dawley female rats were administered MXC (0–200 mg/kg, oral) for 1 or 3 weeks. Immunohistochemical staining of uteri and pituitaries was performed under strictly controlled conditions for VEGF and its receptor VEGFR2, Angiopoietin-1 (Ang1) and angiopoietin-2 and their tyrosine kinase receptor Tie2, and platelet endothelial adhesion factor (as an index of vascularity). Image acquisition and densitometric assessments of staining intensity were conducted under blind conditions. The results showed uterine MXC-induced increases in the expression of VEGFR2 and Ang1, changes consistent with a normal proliferative response to oestrogenic stimulation. For VEGF, staining tended to be most pronounced in the stromal region, although there did not appear to be a progressive increase with dose. VEGFR2 expression showed significant dose-related trends in luminal and glandular epithelia by 1 week. Similar effects at 1 week were evident for Ang1 in glandular epithelium. In the anterior pituitary, a dose-related increase in VEGF was present for the 1 and 3 week treatments, and the number of pituitary vessels per unit area was also increased after 3 weeks. The effects indicate that even though the insecticide has not been found to cause an augmentation in pituitary growth, a dose-related rise in the expression of at least one principal angiogenic factor is present that may be associated with an increase in vascular density.


Toxicological Sciences | 2008

Activation of Mouse and Human Peroxisome Proliferator−Activated Receptor Alpha by Perfluoroalkyl Acids of Different Functional Groups and Chain Lengths

Cynthia J. Wolf; Margy L. Takacs; Judith E. Schmid; Christopher Lau; Barbara D. Abbott

Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.


Teratology | 1996

Comparative effects of haloacetic acids in whole embryo culture

E. Sidney Hunter; Ellen H. Rogers; Judith E. Schmid; Ann M. Richard

A major class of disinfection by-products in drinking water are the haloacetic acids. Both dichloro- and trichloroacetic acids are teratogenic when administered to rats throughout organogenesis. However, there is little information regarding the developmental toxicity of other haloacetic acids. Therefore, 3-6 somite staged CD-1 mouse embryos were exposed to acetic acid (AA) or mono- (M), di- (D), and tri- (T) substituted fluoro- (F), chloro- (C), or bromo- (B) acetic acids in whole embryo culture in order to evaluate the effects of these agents on development. A 24 hour exposure to the haloacetic acids produced dysmorphogenesis. Effects on neural tube development ranged from prosencephalic hypoplasia to non-closure defects throughout the cranial region. Exposure to the haloacetic acids affected optic development, produced malpositioned and/or hypoplastic pharyngeal arches, and resulted in perturbation of heart development. In order to determine the relative toxicities of these agents, benchmark concentrations were calculated as the lower 95% confidence interval of the concentration that produced a 5% increase in neural tube defects. The benchmark concentrations occurred over a wide range with DFA (5912.6 microM) and MBA (2.7 microM) at the extremes. Using the benchmark concentrations to compare the chemicals gives a ranking of the agents in order of increasing potency as: DFA < TFA < DCA < AA < TBA < or = TCA < DBA < MCA < MBA. TCA and DCA have demonstrated ability to disrupt development in vivo but were among the least potent haloacetic acids in vitro. Because of the potential for widespread exposure to haloacetic acids in drinking water and the incomplete toxicity profile of these chemicals, further work on their developmental effects is warranted.


Toxicologic Pathology | 2008

Gene Profiling in the Livers of Wild-type and PPARα-Null Mice Exposed to Perfluorooctanoic Acid

Mitchell B. Rosen; Barbara D. Abbott; Douglas C. Wolf; J. Christopher Corton; Carmen R. Wood; Judith E. Schmid; Kaberi P. Das; Robert D. Zehr; Eric T. Blair; Christopher Lau

Health concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor α (PPARα) activator; however, PFOA is capable of inducing heptomegaly in the PPARα-null mouse. To study the mechanism associated with PFOA toxicity, wild-type and PPARα-null mice were orally dosed for 7 days with PFOA (1 or 3 mg/kg) or the PPARα agonist Wy14,643 (50 mg/kg). Gene expression was evaluated using commercial microarrays. In wild-type mice, PFOA and Wy14,643 induced changes consistent with activation of PPARα. PFOA-treated wild-type mice deviated from Wy14,643-exposed mice with respect to genes involved in xenobiotic metabolism. In PFOA-treated null mice, changes were observed in transcripts related to fatty acid metabolism, inflammation, xenobiotic metabolism, and cell cycle regulation. Hence, a component of the PFOA response was found to be independent of PPARα. Although the signaling pathways responsible for these effects are not readily apparent, overlapping gene regulation by additional PPAR isoforms could account for changes related to fatty acid metabolism and inflammation, whereas regulation of xenobiotic metabolizing genes is suggestive of constitutive androstane receptor activation.


Reproductive Toxicology | 2009

Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPARα) in the mouse

Barbara D. Abbott; Cynthia J. Wolf; Kaberi P. Das; Robert D. Zehr; Judith E. Schmid; Andrew B. Lindstrom; Mark J. Strynar; Christopher Lau

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of peroxisome proliferator activated receptor-alpha (PPAR alpha). The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPAR alpha. This study used PPAR alpha knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPAR alpha expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15 to 18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5mg PFOS/kg/day. KO females were dosed with 0.5% Tween-20, 8.5 or 10.5mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12 to 15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1-15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and weight gain from PND1 to 15 were not significantly affected by PFOS exposure. Relative liver weight of WT and KO pups was significantly increased by the 10.5mg/kg dose. Eye opening of PFOS-exposed pups was slightly delayed in WT and KO on PND13 or 14, respectively. Because results in WT and KO were comparable, it is concluded that PFOS-induced neonatal lethality and delayed eye opening are not dependent on activation of PPAR alpha.


Reproductive Toxicology | 2012

Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): Further investigation of C4–C12 compounds

Cynthia J. Wolf; Judith E. Schmid; Christopher Lau; Barbara D. Abbott

Perfluorinated alkyl acids (PFAAs) are manufactured surfactants found globally in the environment and in tissues of humans and wildlife. Several PFAAs adversely affect rodents and activation of PPARα is thought to be their mode of action. Our previous study demonstrated that some PFAAs activate mouse and human PPARα in transiently transfected COS-1 cells. Here, we test more PFAAs for PPARα activation in the same system. Cells were transfected with either mouse or human PPARα-luciferase reporter plasmid, exposed the next day to either vehicle, PPARα agonist (WY14643), perfluoropentanoic acid (C5), perfluoroheptanoic acid (C7), perfluorooctanoic acid (C8), perfluoroundecanoic acid (C11), or perfluorododecanoic acid (C12) at concentrations from 0.5μM to 100μM, and luminescence was measured after 24h. C8 induced the highest activity for human PPARα, followed by C7, C5, and C11. C12 had little activity. C8 induced the highest activity for mouse PPARα, followed by C11, C7, C12 and C5. The two studies together found increasing activity of PPARα with increasing chain length of the PFAA up to perfluorononanoic acid (C9) and lower activity with longer chain PFAAs with both mouse and human PPARα.


Reproductive Toxicology | 2009

Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid.

Mitchell B. Rosen; Judith E. Schmid; Kaberi P. Das; Carmen R. Wood; Robert D. Zehr; Christopher Lau

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and exhibit hepatocarcinogenic potential in rats. PFOS and PFOA are also developmental toxicants in rodents and PFOS has been shown to induce pulmonary deficits in rat offspring. Pregnant CD-1 mice were dosed with 0, 5, or 10mg/kg PFOS from gestation days 1-17. Transcript profiling was conducted on the fetal liver and lung. Results were contrasted to data derived from a previous PFOA study. PFOS-dependent changes were primarily related to activation of PPAR alpha. No remarkable differences were found between PFOS and PFOA. Given that PPAR alpha signaling is required for neonatal mortality in PFOA-treated mice but not those exposed to PFOS, the neonatal mortality observed for PFOS may reflect functional deficits related to the physical properties of the chemical rather than to transcript alterations.


Biological Trace Element Research | 1998

Effects of boric acid on axial skeletal development in rats.

Michael G. Narotsky; Judith E. Schmid; James E. Andrews; Robert J. Kavlock

Prenatal exposure to elevated levels of boric acid (BA) causes reduced incidences of supernumerary ribs and shortening/absence of the 13th rib in multiple laboratory species. To explore this further, Sprague-Dawley rats received 500 mg/kg b.i.d. on gestation days (gd) 5–9, 6–9, 6–10, or on single days between gd 6 and 11 (plug day = gd 0); gd-21 fetuses were stained for skeletal examination. Following multiday exposures, malformations of the axial skeleton involved the head, sternum, ribs, and vertebrae. Shortening/absence of the 13th rib was seen particularly in the gd 5–9 and 6–10 exposure groups. Although most groups exposed on single days were generally unaffected, about 90% of the gd-9 exposed fetuses had only six cervical vertebrae; the deficient region was usually C3-C5. In contrast, gd-10 treatment caused agenesis of a thoracic/lumbar vertebra in over 60% of the fetuses; the deficient region was usually T11. For 13-ribbed fetuses, the length of rib 13 was shortened compared to controls. Postnatal assessment suggested increased mortality for gd-10 exposed pups. Embryos in culture showed reduced development when exposed to BA for 48 h. These findings demonstrate the critical periods for axial development in the rat and provide an experimental model for the study of homeotic shifts.


Environmental Science & Technology | 2016

Progressive Increase in Disinfection Byproducts and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Inputs

Eric J. Daiber; David M. DeMarini; Sridevi A. Ravuri; Hannah K. Liberatore; Amy A. Cuthbertson; Alexis Thompson-Klemish; Jonathan D. Byer; Judith E. Schmid; Mehrnaz Zare Afifi; Ernest R. Blatchley; Susan D. Richardson

Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from seven sites, we report the first integrated mutagenicity and comprehensive analytical chemistry of spas treated with chlorine, bromine, or ozone, along with pools treated with these same disinfectants. Gas chromatography (GC) with high-resolution mass spectrometry, membrane-introduction mass spectrometry, and GC-electron capture detection were used to comprehensively identify and quantify DBPs and other contaminants. Mutagenicity was assessed by the Salmonella mutagenicity assay. More than 100 DBPs were identified, including a new class of DBPs, bromoimidazoles. Organic extracts of brominated pool/spa waters were 1.8× more mutagenic than chlorinated ones; spa waters were 1.7× more mutagenic than pools. Pool and spa samples were 2.4 and 4.1× more mutagenic, respectively, than corresponding tap waters. The concentration of the sum of 21 DBPs measured quantitatively increased from finished to tap to pool to spa; and mutagenic potency increased from finished/tap to pools to spas. Mutagenic potencies of samples from a chlorinated site correlated best with brominated haloacetic acid concentrations (Br-HAAs) (r = 0.98) and nitrogen-containing DBPs (N-DBPs) (r = 0.97) and the least with Br-trihalomethanes (r = 0.29) and Br-N-DBPs (r = 0.04). The mutagenic potencies of samples from a brominated site correlated best (r = 0.82) with the concentrations of the nine HAAs, Br-HAAs, and Br-DBPs. Human use increased significantly the DBP concentrations and mutagenic potencies for most pools and spas. These data provide evidence that human precursors can increase mutagenic potencies of pools and spas and that this increase is associated with increased DBP concentrations.


Inhalation Toxicology | 2013

Susceptibility of adult and senescent Brown Norway rats to repeated ozone exposure: an assessment of behavior, serum biochemistry and cardiopulmonary function

Christopher J. Gordon; J. R. Lehmann; Allen D. Ledbetter; Mette C. Schladweiler; Judith E. Schmid; William O. Ward; Abraham Nyska; Robert C. MacPhail

Abstract Ozone (O3) is a pervasive air pollutant that produces pulmonary and cardiovascular dysfunction and possible neurological dysfunction. Young and old individuals are recognized as being susceptible to O3; however, remarkably little is known about susceptibility with senescence. This study explored the pulmonary, cardiovascular and neurological effects of O3 exposure in adult (4 m) and senescent (20 m) Brown Norway rats exposed to 0 or 0.8 ppm O3 for 6 h, 1 d/week, for 17 weeks. Ventilatory function was assessed 1 and 7 d after each exposure (Buxco). Heart rate, blood pressure (tail cuff) and motor activity were measured biweekly. Blood, aorta and bronchoalveolar lavage fluid (BALF) were analyzed 24 h after the last exposure for pulmonary inflammation, serum biomarkers and aorta mRNA markers of vascular disease. Measures of normal ventilatory function declined following each O3 exposure in both adult and senescent rats, however, senescent rats took weeks to exhibit a decline. Evidence for residual respiratory effects of O3 7 d after exposure in both age groups was observed. O3 had no effect on either heart rate or blood pressure, but decreased motor activity in both age groups. BALF indicated mild neutrophilic inflammation and protein leakage in adults. Age affected 17/58 serum analytes, O3 affected 6/58; 2/58 showed an age–O3 interaction. Leptin, adiponectin, lipocalin and insulin were increased in senescent rats. Overall, adult rats exhibited more immediate effects of episodic O3 than senescent rats. Residual effects were, however, obtained in both ages of rat, especially for ventilatory endpoints.

Collaboration


Dive into the Judith E. Schmid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen R. Wood

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Christopher Lau

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David J. Dix

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

John C. Rockett

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela R. Buckalew

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. DeMarini

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge