Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaberi P. Das is active.

Publication


Featured researches published by Kaberi P. Das.


Toxicologic Pathology | 2008

Gene Profiling in the Livers of Wild-type and PPARα-Null Mice Exposed to Perfluorooctanoic Acid

Mitchell B. Rosen; Barbara D. Abbott; Douglas C. Wolf; J. Christopher Corton; Carmen R. Wood; Judith E. Schmid; Kaberi P. Das; Robert D. Zehr; Eric T. Blair; Christopher Lau

Health concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor α (PPARα) activator; however, PFOA is capable of inducing heptomegaly in the PPARα-null mouse. To study the mechanism associated with PFOA toxicity, wild-type and PPARα-null mice were orally dosed for 7 days with PFOA (1 or 3 mg/kg) or the PPARα agonist Wy14,643 (50 mg/kg). Gene expression was evaluated using commercial microarrays. In wild-type mice, PFOA and Wy14,643 induced changes consistent with activation of PPARα. PFOA-treated wild-type mice deviated from Wy14,643-exposed mice with respect to genes involved in xenobiotic metabolism. In PFOA-treated null mice, changes were observed in transcripts related to fatty acid metabolism, inflammation, xenobiotic metabolism, and cell cycle regulation. Hence, a component of the PFOA response was found to be independent of PPARα. Although the signaling pathways responsible for these effects are not readily apparent, overlapping gene regulation by additional PPAR isoforms could account for changes related to fatty acid metabolism and inflammation, whereas regulation of xenobiotic metabolizing genes is suggestive of constitutive androstane receptor activation.


Reproductive Toxicology | 2009

Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPARα) in the mouse

Barbara D. Abbott; Cynthia J. Wolf; Kaberi P. Das; Robert D. Zehr; Judith E. Schmid; Andrew B. Lindstrom; Mark J. Strynar; Christopher Lau

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of peroxisome proliferator activated receptor-alpha (PPAR alpha). The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPAR alpha. This study used PPAR alpha knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPAR alpha expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15 to 18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5mg PFOS/kg/day. KO females were dosed with 0.5% Tween-20, 8.5 or 10.5mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12 to 15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1-15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and weight gain from PND1 to 15 were not significantly affected by PFOS exposure. Relative liver weight of WT and KO pups was significantly increased by the 10.5mg/kg dose. Eye opening of PFOS-exposed pups was slightly delayed in WT and KO on PND13 or 14, respectively. Because results in WT and KO were comparable, it is concluded that PFOS-induced neonatal lethality and delayed eye opening are not dependent on activation of PPAR alpha.


Toxicologic Pathology | 2008

Comparative Hepatic Effects of Perfluorooctanoic Acid and WY 14,643 in PPAR-α Knockout and Wild-type Mice

Douglas C. Wolf; Tanya Moore; Barbara D. Abbott; Mitchell B. Rosen; Kaberi P. Das; Robert D. Zehr; Andrew B. Lindstrom; Mark J. Strynar; Christopher Lau

Perfluorooctanoic acid (PFOA) is a chemical used in the production of fluoropolymers. Its persistence in the environment and presence in humans and wildlife has raised health concerns. Liver tumor induction by PFOA is thought to be mediated in rodents by PPAR-α. A recent US EPA scientific advisory board questioned the contribution of PPAR-α in PFOA-induced liver tumors. Liver response in CD-1, SV/129 wild-type (WT), and PPAR-α knockout (KO) SV/129 mice was evaluated after seven daily treatments of PFOA-NH4 + (1, 3, or 10 mg/kg, p.o.) or the prototype PPARα-agonist Wyeth 14,643 (WY, 50 mg/kg). Livers were examined by light and electron microscopy. Proliferation was quantified after PCNA immunostaining. PFOA treatment induced a dose-dependent increase in hepatocyte hypertrophy and labeling index (LI) similar to WY in WT mice. Ultrastructural alterations of peroxisome proliferation were similar between WY-treated and 10 mg/kg PFOA-treated WT mice. KO mice had a dose-dependent increase in hepatocyte vacuolation but increased LI only at 10 mg PFOA/kg. WY-treated KO mice were not different from KO control. These data suggest that PPAR-α is required for WY- and PFOA-induced cellular alterations in WT mouse liver. Hepatic enlargement observed in KO mice may be due to an accumulation of cytoplasmic vacuoles that contain PFOA.


Toxicological Sciences | 2008

Comparative Pharmacokinetics of Perfluorobutyrate in Rats, Mice, Monkeys, and Humans and Relevance to Human Exposure via Drinking Water

Shu-Ching Chang; Kaberi P. Das; David J. Ehresman; Mark E. Ellefson; Gregory S. Gorman; Jill A. Hart; Patricia E. Noker; Yu-Mei Tan; Paul H. Lieder; Christopher Lau; Geary W. Olsen; John L. Butenhoff

Perfluorobutyrate (PFBA) has been detected in precipitation, surface waters, water treatment effluent, and in public and private wells in Minnesota at up to low microg/l concentrations. We evaluated the pharmacokinetics of PFBA in rats, mice, monkeys, and humans to provide a rational basis for dose selection in toxicological studies and to aid in human-health-risk assessment. Studies included (1) rats--iv and oral; (2) mice--oral; (3) monkeys--iv; and (4) humans--occupationally exposed volunteers. PFBA was determined in serum (all species), liver (rats and mice), urine (rats, mice, and monkeys), and feces (rats and mice). In addition, we characterized serum PFBA concentrations in 177 individuals with potential exposure to PFBA through drinking water. Mean terminal serum PFBA elimination half-lives for males (M) and females (F), respectively, in h were (1) for rats given 30 mg/kg, 9.22 and 1.76 (oral), and 6.38 and 1.03 (iv); (2) for mice given oral doses of 10, 30, or 100 mg/kg ammonium PFBA, 13.34 and 2.87 at 10 mg/kg, 16.25 and 3.08 at 30 mg/kg; and 5.22 and 2.79 at 100 mg/kg; (3) for monkeys given 10 mg/kg iv, 40.32 and 41.04; and (4) for humans, 72.16 and 87.00 (74.63 combined). Volume of distribution estimates indicated primarily extracellular distribution. Among individuals with plausible exposure via drinking water, 96% of serum PFBA concentrations were < 2 ng/ml (maximum 6 ng/ml). These findings demonstrate that PFBA is eliminated efficiently from serum with a low potential for accumulation from repeated exposure.


Ppar Research | 2010

Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects

Mitchell B. Rosen; Judith R. Schmid; J. Christopher Corton; Robert D. Zehr; Kaberi P. Das; Barbara D. Abbott; Christopher Lau

Perfluorooctane sulfonate (PFOS) is a perfluoroalkyl acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Like other PFAAs, such as, perfluorooctanoic acid (PFOA), PFOS is an activator of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibits hepatocarcinogenic potential in rodents. PFOS is also a developmental toxicant in rodents where, unlike PFOA, its mode of action is independent of PPARα. Wild-type (WT) and PPARα-null (Null) mice were dosed with 0, 3, or 10u2009mg/kg/day PFOS for 7 days. Animals were euthanized, livers weighed, and liver samples collected for histology and preparation of total RNA. Gene profiling was conducted using Affymetrix 430_2 microarrays. In WT mice, PFOS induced changes that were characteristic of PPARα transactivation including regulation of genes associated with lipid metabolism, peroxisome biogenesis, proteasome activation, and inflammation. PPARα-independent changes were indicated in both WT and Null mice by altered expression of genes related to lipid metabolism, inflammation, and xenobiotic metabolism. Such results are similar to studies done with PFOA and are consistent with modest activation of the constitutive androstane receptor (CAR), and possibly PPARγ and/or PPARβ/δ. Unique treatment-related effects were also found in Null mice including altered expression of genes associated with ribosome biogenesis, oxidative phosphorylation, and cholesterol biosynthesis. Of interest was up-regulation of Cyp7a1, a gene which is under the control of various transcription regulators. Hence, in addition to its ability to modestly activate PPARα, PFOS induces a variety of PPARα-independent effects as well.


Reproductive Toxicology | 2009

Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid.

Mitchell B. Rosen; Judith E. Schmid; Kaberi P. Das; Carmen R. Wood; Robert D. Zehr; Christopher Lau

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and exhibit hepatocarcinogenic potential in rats. PFOS and PFOA are also developmental toxicants in rodents and PFOS has been shown to induce pulmonary deficits in rat offspring. Pregnant CD-1 mice were dosed with 0, 5, or 10mg/kg PFOS from gestation days 1-17. Transcript profiling was conducted on the fetal liver and lung. Results were contrasted to data derived from a previous PFOA study. PFOS-dependent changes were primarily related to activation of PPAR alpha. No remarkable differences were found between PFOS and PFOA. Given that PPAR alpha signaling is required for neonatal mortality in PFOA-treated mice but not those exposed to PFOS, the neonatal mortality observed for PFOS may reflect functional deficits related to the physical properties of the chemical rather than to transcript alterations.


Ppar Research | 2010

Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues

Barbara D. Abbott; Carmen R. Wood; Andrew M. Watkins; Kaberi P. Das; Christopher Lau

Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists.


Reproductive Toxicology | 2012

Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues☆

Barbara D. Abbott; Carmen R. Wood; Andrew M. Watkins; Katoria Tatum-Gibbs; Kaberi P. Das; Christopher Lau

PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARα is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1 to 17 with water or 5mg PFOA/kg to examine PPARα, PPARβ, and PPARγ expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARα and PPARγ expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of CD-1 mouse neonates.


Reproductive Toxicology | 2012

Toxicological evaluation of ammonium perfluorobutyrate in rats: Twenty-eight-day and ninety-day oral gavage studies ☆

John L. Butenhoff; James A. Bjork; Shu Ching Chang; David J. Ehresman; George A. Parker; Kaberi P. Das; Christopher Lau; Paul H. Lieder; Francois van Otterdijk; Kendall B. Wallace

Sequential 28-day and 90-day oral toxicity studies were performed in male and female rats with ammonium perfluorobutyrate (NH(4)(+)PFBA) at doses up to 150 and 30mg/kg-d, respectively. Ammonium perfluorooctanoate was used as a comparator at a dose of 30mg/kg-d in the 28-day study. Female rats were unaffected by NH(4)(+)PFBA. Effects in males included: increased liver weight, slight to minimal hepatocellular hypertrophy; decreased serum total cholesterol; and reduced serum thyroxin with no change in serum thyrotropin. During recovery, liver weight, histological, and cholesterol effects were resolved. Results of RT-qPCR were consistent with increased transcriptional expression of the xenosensor nuclear receptors PPARα and CAR as well as the thyroid receptor, and decreased expression of Cyp1A1 (Ah receptor-regulated). No observable adverse effect levels (NOAELs) were 6 and >150mg/kg-d for male and female rats in the 28-day study and 6 and >30mg/kg-d in the 90-dat study, respectively.


Reproductive Toxicology | 2015

Developmental toxicity of perfluorononanoic acid in mice

Kaberi P. Das; Brian E. Grey; Mitchell B. Rosen; Carmen R. Wood; Katoria Tatum-Gibbs; R. Daniel Zehr; Mark J. Strynar; Andrew B. Lindstrom; Christopher Lau

Perfluorononanoic acid (PFNA) is a ubiquitous and persistent environmental contaminant. Although its levels in the environment and in humans are lower than those of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA), a steady trend of increases in the general population in recent years has drawn considerable interest and concern. Previous studies with PFOS and PFOA have indicated developmental toxicity in laboratory rodent models. The current study extends the evaluation of these adverse outcomes to PFNA in mice. PFNA was given to timed-pregnant CD-1 mice by oral gavage daily on gestational day 1-17 at 1, 3, 5 or 10mg/kg; controls received water vehicle. Dams given 10mg/kg PFNA could not carry their pregnancy successfully and effects of this dose group were not followed. Similar to PFOS and PFOA, PFNA at 5mg/kg or lower doses produced hepatomegaly in the pregnant dams, but did not affect the number of implantations, fetal viability, or fetal weight. Mouse pups were born alive and postnatal survival in the 1 and 3mg/kg PFNA groups was not different from that in controls. In contrast, although most of the pups were also born alive in the 5mg/kg PFNA group, 80% of these neonates died in the first 10 days of life. The pattern of PFNA-induced neonatal death differed somewhat from those elicited by PFOS or PFOA. A majority of the PFNA-exposed pups survived a few days longer after birth than those exposed to PFOS or PFOA, which typically died within the first 2 days of postnatal life. Surviving neonates exposed to PFNA exhibited dose-dependent delays in eye opening and onset of puberty. In addition, increased liver weight seen in PFNA-exposed offspring persisted into adulthood and was likely related to the persistence of the chemical in the tissue. Evaluation of gene expression in fetal and neonatal livers revealed robust activation of peroxisome proliferator-activated receptor-alpha (PPARα) target genes by PFNA that resembled the responses of PFOA. Our results indicate that developmental toxicity of PFNA in mice is comparable to that of PFOS and PFOA, and that these adverse effects are likely common to perfluoroalkyl acids that persist in the body.

Collaboration


Dive into the Kaberi P. Das's collaboration.

Top Co-Authors

Avatar

Christopher Lau

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Barbara D. Abbott

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Carmen R. Wood

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Robert D. Zehr

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Mark J. Strynar

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Lindstrom

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Judith E. Schmid

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Watkins

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Cynthia J. Wolf

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge