Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith F. Blom is active.

Publication


Featured researches published by Judith F. Blom.


Toxicon | 2001

High grazer toxicity of [D-Asp3,(E)-Dhb7]microcystin-RR of Planktothrix rubescens as compared to different microcystins

Judith F. Blom; J.A Robinson; Friedrich Jüttner

Planktothrix rubescens, the dominant cyanobacterium in Lake Zürich, is generally considered to be toxic to zooplankton. The major toxin was determined by NMR spectroscopy and chemical analysis to be [D-Asp(3),(E)-Dhb(7)]microcystin-RR. The compound was isolated in high purity, and its 24-h acute grazer toxicity was compared with microcystin-LR, microcystin-RR, microcystin-YR, and nodularin using a Thamnocephalus platyurus bioassay. Based on LC(50) values [D-Asp(3),(E)-Dhb(7)]microcystin-RR was the most toxic microcystin tested. Nodularin was slightly more toxic under the conditions of the assay. The large number of individuals available for the grazer bioassay allowed the determination of dose-response curves of the different microcystins. These curves showed marked differences in their steepness. Microcystin-RR, which had nearly the same LC(50) as microcystin-LR and microcystin-YR, exhibited a very flat dose-response curve. This flat curve indicates that, for some individuals, lower concentrations of this microcystin are much more toxic than are the other two microcystins. Mortality of 100% requires much higher concentrations of microcystin-RR, indicating the resistance of some animals to the toxin. The purified [D-Asp(3),(E)-Dhb(7)]microcystin-RR exhibited a higher molar absorption coefficient determined by quantitative amino acid analysis than the coefficients generally used for other microcystins. This observation has consequences for the risk assessment for microcystins and makes a structural determination of microcystins an absolute requirement. The presence of the dehydrobutyrine residue may be the reason for the higher specific toxicity of [D-Asp(3),(E)-Dhb(7)]microcystin-RR when compared to the N-methyldehydroalanine-containing microcystins.


Environmental Microbiology | 2009

Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex.

Silvia Schmidt; Judith F. Blom; Jakob Pernthaler; Gabriele Berg; Adam Baldwin; Eshwar Mahenthiralingam; Leo Eberl

Members of the genus Burkholderia are known for their ability to suppress soil-borne fungal pathogens by the production of various antibiotic compounds. In this study we investigated the role of N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) in the expression of antifungal traits. Using a quorum quenching approach, that is, by heterologous expression of the Bacillus sp. AiiA lactonase, we show that expression of antifungal activities is AHL-dependent in the large majority of the investigated strains belonging to various Burkholderia species. We demonstrate that in certain strains of Burkholderia ambifaria, Burkholderia pyrrocinia and Burkholderia lata, one of the QS-regulated antifungal agents is pyrrolnitrin (prn), a common broad-spectrum antibiotic that is also produced by some Pseudomonas and Serratia species. To investigate the underlying molecular mechanisms of AHL-dependent prn production in better detail, we inactivated the AHL synthase cepI as well as cepR, which encodes the cognate AHL receptor protein, in B. lata 383. Both QS mutants no longer produced prn as assessed by gas chromatography-mass spectrometry analysis and as a consequence were unable to inhibit growth of Rhizoctonia solani. Using fusions of the lacZ gene to the promoter of the prnABCD operon, which directs the synthesis of prn, we demonstrate that expression of prn is positively regulated by CepR at the level of transcription.


Journal of Natural Products | 2008

Aerucyclamides A and B: Isolation and Synthesis of Toxic Ribosomal Heterocyclic Peptides from the Cyanobacterium Microcystis aeruginosa PCC 7806

Cyril Portmann; Judith F. Blom; Karl Gademann; Friedrich Jüttner

Two new modified hexacyclopeptides, aerucyclamides A and B, were isolated from the toxic freshwater cyanobacterium Microcystis aeruginosa PCC 7806. The constitution was assigned by spectroscopic methods, and the configuration determined by chemical degradation and analysis by Marfeys method combined with chemical synthesis. Synthetic aerucyclamide B was obtained through oxidation of aerucyclamide A (MnO2, benzene). The aerucyclamides were found to be toxic to the freshwater crustacean Thamnocephalus platyurus, exhibiting LC50 values for congeners A and B of 30.5 and 33.8 microM, respectively.


Journal of Natural Products | 2008

Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation.

Cyril Portmann; Judith F. Blom; Marcel Kaiser; Reto Brun; Friedrich Jüttner; Karl Gademann

Aerucyclamides C and D were isolated from the cyanobacterium Microcystis aeruginosa PCC 7806, and their structures established by NMR spectroscopy and chemical transformation and degradation. Acidic hydrolysis of aerucyclamide C (CF(3)CO(2)H, H(2)O) resulted in microcyclamide 7806A. This chemical evidence combined with spectroscopic and physical data suggest a structure revision for microcyclamide 7806A, which incorporates an O-acylated Thr ammonium residue instead of the originally proposed methyl oxazoline ring. We have prepared microcyclamide 7806B upon basic and acidic treatment of microcyclamide 7806A, which suggests that both these compounds are hydrolysis products of aerucyclamide C and that the aerucyclamides A-D are the actual metabolites produced via ribosomal peptide synthesis in M. aeruginosa PCC 7806. Antiplasmodial evaluation established submicromolar IC(50) values for aerucyclamide B against Plasmodium falciparum; low micromolar values for aerucyclamide C were found against Trypanosoma brucei rhodesiense. The compounds were selective for the parasites over a cell line of L6 rat myoblasts and are thus considered for further study as antimalarial agents.


Journal of Natural Products | 2010

Multiple Toxin Production in the Cyanobacterium Microcystis: Isolation of the Toxic Protease Inhibitor Cyanopeptolin 1020

Karl Gademann; Cyril Portmann; Judith F. Blom; Michael Zeder; Friedrich Jüttner

The isolation and structure of cyanopeptolin 1020 (hexanoic acid-Glu-N[-O-Thr-Arg-Ahp-Phe-N-Me-Tyr-Val-]) from a Microcystis strain is reported. Very potent picomolar trypsin inhibition (IC(50) = 670 pM) and low nanomolar values against human kallikrein (4.5 nM) and factor XIa (3.9 nM) have been determined for cyanopeptolin 1020. For plasmin and chymotrypsin, low micromolar concentrations were necessary for 50% inhibition. Cyanopeptolin 1020 was found to be toxic against the freshwater crustacean Thamnocephalus platyurus (LC(50) = 8.8 microM), which is in the same range as some of the well-known microcystins. These data support the hypothesis that cyanopeptolins can be considered as a second class of toxins in addition to the well-established microcystins in Microcystis.


FEMS Microbiology Ecology | 2010

Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates

Judith F. Blom; Jakob Pernthaler

We investigated the antibiotic effects of extracts of freeze-dried biomass and culture supernatants from the mixotrophic chrysophyte species Ochromonas danica, Poterioochromonas sp. strain DS, and Poterioochromonas malhamensis on bacterial strains isolated from lake water. Methanolic biomass extracts inhibited the growth of all tested strains, albeit to a different extent, whereas aqueous biomass extracts only affected bacteria of the genus Flectobacillus. The antibiotic action of supernatants from flagellate cultures could be mostly attributed to lipophilic substances, but the growth of bacteria affiliated with Flectobacillus and Sphingobium was also affected by hydrophilic compounds. A comparison of biomass extracts from light- and dark-adapted cultures of Poterioochromonas sp. strain DS showed that the growth-inhibiting factor was unrelated to chlorophyll derivatives. Supernatants from a dark-adapted, phagotrophically grown flagellate culture had stronger antibiotic effects and affected more bacterial strains than the supernatant from a light-adapted culture. Significant growth reduction of a Flectobacillus isolate was already induced by extremely low concentrations of lipophilic extracts from these supernatants. Our results show that metabolites of the studied flagellates - either released actively or during cell lysis - may selectively affect the growth of some aquatic bacteria even in very small doses and thus potentially affect microbial community composition. Moreover, the antibiotic potential of mixotrophic chrysophytes may change with their nutritional mode.


Environmental Microbiology | 2010

Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues.

Judith F. Blom; Karel Horňák; Karel Šimek; Jakob Pernthaler

We investigated the induction of aggregate formation in the freshwater bacterium Sphingobium sp. strain Z007 by growth state and protistan grazing. Dialysis bag batch culture experiments were conducted in which these bacteria were grown spatially separated from bacteria or from co-cultures of bacteria and predators. In pure cultures of Sphingobium sp. strain Z007, the concentrations of single cells and aggregates inside and outside the dialysis membranes developed in a similar manner over 3 days of incubation, and the proportions of aggregates were highest during the exponential growth phase. Cell production of Sphingobium sp. strain Z007 was enhanced in the presence of another isolate, Limnohabitans planktonicus, from an abundant freshwater lineage (R-BT065) outside the bags, and even more so if that strain was additionally grazed upon by the bacterivorous flagellate Poterioochromonas sp. However, the ratios of single cells to aggregates of Sphingobium sp. strain Z007 were not affected in either case. By contrast, the feeding of flagellates on Sphingobium sp. strain Z007 outside the dialysis bags led to significantly higher proportions of aggregates inside the bags. This was not paralleled by an increase in growth rates, and all cultures were in a comparable growth state at the end of the experiment. We conclude that two mechanisms, growth state and the possible release of infochemicals by the predator, may induce aggregate formation of Sphingobium sp. strain Z007. Moreover, these infochemicals only appeared to be generated by predation on cells from the same species.


The ISME Journal | 2015

Integrating phylogeny, geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix

Rainer Kurmayer; Judith F. Blom; Li Deng; Jakob Pernthaler

Toxic freshwater cyanobacteria form harmful algal blooms that can cause acute toxicity to humans and livestock. Globally distributed, bloom-forming cyanobacteria Planktothrix either retain or lose the mcy gene cluster (encoding the synthesis of the secondary metabolite hepatotoxin microcystin or MC), resulting in a variable spatial/temporal distribution of (non)toxic genotypes. Despite their importance to human well-being, such genotype diversity is not being mapped at scales relevant to nature. We aimed to reveal the factors influencing the dispersal of those genotypes by analyzing 138 strains (from Europe, Russia, North America and East Africa) for their (i) mcy gene cluster composition, (ii) phylogeny and adaptation to their habitat and (iii) ribosomally and nonribosomally synthesized oligopeptide products. Although all the strains from different species contained at least remnants of the mcy gene cluster, various phylogenetic lineages evolved and adapted to rather specific ecological niches (for example, through pigmentation and gas vesicle protein size). No evidence for an increased abundance of specific peptides in the absence of MC was found. MC and peptide distribution rather depended on phylogeny, ecophysiological adaptation and geographic distance. Together, these findings provide evidence that MC and peptide production are primarily related to speciation processes, while within a phylogenetic lineage the probability that strains differ in peptide composition increases with geographic distance.


Aquatic Toxicology | 2014

Molecular effects of the cyanobacterial toxin cyanopeptolin (CP1020) occurring in algal blooms: global transcriptome analysis in zebrafish embryos.

Susanne Faltermann; Sara Zucchi; Esther Kohler; Judith F. Blom; Jakob Pernthaler; Karl Fent

Higher water temperatures due to climate change combined with eutrophication of inland waters promote cyanobacterial blooms. Some of the cyanobacteria produce toxins leading to drinking water contamination and fish poisoning on a global scale. Here, we focused on the molecular effects of the cyanobacterial oligopeptide cyanopeptolin CP1020, produced by Microcystis and Planktothrix strains, by means of whole-genome transcriptomics. Exposure of 72 hpf old zebrafish embryos for 96 h to 100 and 1,000 μg/L CP1020 resulted in differential transcriptional alteration of 396 and 490 transcripts (fold change ≥ 2), respectively, of which 68 gene transcripts were common. These belong to genes related to various important biological and physiological pathways. Most clearly affected were pathways related to DNA damage recognition and repair, circadian rhythm and response to light. Validation by RT-qPCR showed dose-dependent transcriptional alterations of genes belonging to DNA damage and repair and regulation of circadian rhythm. This leads to the hypothesis that CP1020 acts on DNA and has neurotoxic activity. This transcriptome analysis leads to the identification of novel and unknown molecular effects of this cyanobacterial toxin, including neurotoxicity, which may have important consequences for humans consuming contaminated drinking water.


Applied and Environmental Microbiology | 2010

Scent of Danger: Floc Formation by a Freshwater Bacterium Is Induced by Supernatants from a Predator-Prey Coculture

Judith F. Blom; Yannick S. Zimmermann; Thomas Ammann; Jakob Pernthaler

ABSTRACT We investigated predator-prey interactions in a model system consisting of the bacterivorous flagellate Poterioochromonas sp. strain DS and the freshwater bacterium Sphingobium sp. strain Z007. This bacterial strain tends to form a subpopulation of grazing-resistant microscopic flocs, presumably by aggregation. Enhanced formation of such flocs could be demonstrated in static batch culture experiments in the presence of the predator. The ratio of aggregates to single cells reached >0.1 after 120 h of incubation in an oligotrophic growth medium. The inoculation of bacteria into supernatants from cocultures of bacteria and flagellates (grown in oligotrophic or in rich media) also resulted in a substantially higher level of floc formation than that in supernatants from bacterial monocultures only. After separation of supernatants on a C18 cartridge, the aggregate-inducing activity could be assigned to the 50% aqueous methanolic fraction, and further separation of this bioactive fraction could be achieved by high-pressure liquid chromatography. These results strongly suggest the involvement of one or several chemical factors in the induction of floc formation by Sphingobium sp. strain Z007 that are possibly released into the surrounding medium by flagellate grazing.

Collaboration


Dive into the Judith F. Blom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril Portmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Kaiser

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Reto Brun

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge