Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Fraussen is active.

Publication


Featured researches published by Judith Fraussen.


Journal of Immunology | 2007

CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation.

Marielle Thewissen; Veerle Somers; Niels Hellings; Judith Fraussen; Jan Damoiseaux; Piet Stinissen

To determine the role of expanded CD4+CD28null T cells in multiple sclerosis and rheumatoid arthritis pathology, these cells were phenotypically characterized and their Ag reactivity was studied. FACS analysis confirmed that CD4+CD28null T cells are terminally differentiated effector memory cells. In addition, they express phenotypic markers that indicate their capacity to infiltrate into tissues and cause tissue damage. Whereas no reactivity to the candidate autoantigens myelin basic protein and collagen type II was observed within the CD4+CD28null T cell subset, CMV reactivity was prominent in four of four HC, four of four rheumatoid arthritis patients, and three of four multiple sclerosis patients. The level of the CMV-induced proliferative response was found to be related to the clonal diversity of the response. Interestingly, our results illustrate that CD4+CD28null T cells are not susceptible to the suppressive actions of CD4+CD25+ regulatory T cells. In conclusion, this study provides several indications for a role of CD4+CD28null T cells in autoimmune pathology. CD4+CD28null T cells display pathogenic features, fill up immunological space, and are less susceptible to regulatory mechanisms. However, based on their low reactivity to the autoantigens tested in this study, CD4+CD28null T cells most likely do not play a direct autoaggressive role in autoimmune disease.


Autoimmunity Reviews | 2014

Targets of the humoral autoimmune response in multiple sclerosis.

Judith Fraussen; Nele Claes; Laura de Bock; Veerle Somers

Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system (CNS) with heterogeneous clinical, genetic and pathophysiological characteristics. The establishment of reliable biomarkers for diagnosis, prognosis and treatment of MS has therefore proven to be very difficult. During the last decades, mounting evidence has been collected for the involvement of B cells and antibodies in MS pathogenesis. A wide variety of autoantibodies has been described in MS and these autoantibodies could be useful biomarkers for MS. Since demyelination is a key component of MS pathogenesis, myelin antigens were first investigated as primary targets of autoantibodies in MS. More recently, it became evident that the humoral autoimmune response is not restricted to myelin but is much more widespread throughout the brain. Autoantibodies are formed against different CNS cell types, including neurons, oligodendrocytes and astrocytes, and even immune cells, indicating the complex heterogeneity of the disease. In this review, we give an extensive overview of the known autoantibody targets in MS, not according to the traditional subdivision of myelin and non-myelin components but according to each of the affected cell types, including the most recently described target antigens.


Autoimmunity | 2010

The auto-antigen repertoire in myasthenia gravis

Kathleen Vrolix; Judith Fraussen; Peter C. M. Molenaar; Mario Losen; Veerle Somers; Piet Stinissen; Marc H. De Baets; Pilar Martinez-Martinez

Myasthenia Gravis (MG) is an antibody-mediated autoimmune disorder affecting the postsynaptic membrane of the neuromuscular junction (NMJ). MG is characterized by an impaired signal transmission between the motor neuron and the skeletal muscle cell, caused by auto-antibodies directed against NMJ proteins. The auto-antibodies target the nicotinic acetylcholine receptor (nAChR) in about 90% of MG patients. In approximately 5% of MG patients, the muscle specific kinase (MuSK) is the auto-antigen. In the remaining 5% of MG patients, however, antibodies against the nAChR or MuSK are not detectable (idiopathic MG, iMG). Although only the anti-nAChR and anti-MuSK auto-antibodies have been demonstrated to be pathogenic, several other antibodies recognizing self-antigens can also be found in MG patients. Various auto-antibodies associated with thymic abnormalities have been reported, as well as many non-MG-specific auto-antibodies. However, their contribution to the cause, pathology and severity of the disease is still poorly understood. Here, we comprehensively review the reported auto-antibodies in MG patients and discuss their role in the pathology of this autoimmune disease.


Autoimmunity Reviews | 2009

B cell characterization and reactivity analysis in multiple sclerosis

Judith Fraussen; Kathleen Vrolix; Pilar Martinez-Martinez; Mario Losen; M. De Baets; Piet Stinissen; Veerle Somers

Abstract B cells are one of the key players in the pathogenesis of multiple sclerosis (MS). The peripheral B cell distributions are similar in healthy persons and MS patients. In healthy controls, B cells are rarely present in the cerebrospinal fluid (CSF) while in MS patients, a clonally expanded B cell population is detected. This consists of memory B cells, centroblasts and antibody-secreting plasma blasts and plasma cells that are responsible for intrathecal immunoglobulin G production and oligoclonal band formation in more than 90% of MS patients. Unfortunately, the targets of the autoreactive B cells and antibodies remain largely unknown. Various candidate antigens have been identified but often their involvement in the disease process is still unclear. Most studies characterizing these target antigens examined autoantibodies by analyzing sera or CSF of MS patients. An alternative approach is focusing on the clonally expanded B cells. In this way B cells directed against myelin, astroglia and axons have been denoted in MS patients. B cell immortalization, that is based on the antibody-producing potential of Epstein–Barr virus (EBV) transformed B cells, can be used to expand B cells from MS patients for the production of antibodies, that ultimately can be analysed for target identification.


PLOS ONE | 2014

Compositional Changes of B and T Cell Subtypes during Fingolimod Treatment in Multiple Sclerosis Patients: A 12-Month Follow-Up Study

Nele Claes; Tessa Dhaeze; Judith Fraussen; Bieke Broux; Bart Van Wijmeersch; Piet Stinissen; Raymond Hupperts; Niels Hellings; Veerle Somers

Background and objective The long term effects of fingolimod, an oral treatment for relapsing-remitting (RR) multiple sclerosis (MS), on blood circulating B and T cell subtypes in MS patients are not completely understood. This study describes for the first time the longitudinal effects of fingolimod treatment on B and T cell subtypes. Furthermore, expression of surface molecules involved in antigen presentation and costimulation during fingolimod treatment are assessed in MS patients in a 12 month follow-up study. Methods Using flow cytometry, B and T cell subtypes, and their expression of antigen presentation, costimulation and migration markers were measured during a 12 month follow-up in the peripheral blood of MS patients. Data of fingolimod-treated MS patients (n = 49) were compared to those from treatment-naive (n = 47) and interferon-treated (n = 27) MS patients. Results In the B cell population, we observed a decrease in the proportion of non class-switched and class-switched memory B cells (p<0.001), both implicated in MS pathogenesis, while the proportion of naive B cells was increased during fingolimod treatment in the peripheral blood (PB) of MS patients (p<0.05). The remaining T cell population, in contrast, showed elevated proportions of memory conventional and regulatory T cells (p<0.01) and declined proportions of naive conventional and regulatory cells (p<0.05). These naive T cell subtypes are main drivers of MS pathogenesis. B cell expression of CD80 and CD86 and programmed death (PD) -1 expression on circulating follicular helper T cells was increased during fingolimod follow-up (p<0.05) pointing to a potentially compensatory mechanism of the remaining circulating lymphocyte subtypes that could provide additional help during normal immune responses. Conclusions MS patients treated with fingolimod showed a change in PB lymphocyte subtype proportions and expression of functional molecules on T and B cells, suggesting an association with the therapeutic efficacy of fingolimod.


Frontiers in Immunology | 2015

B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions

Nele Claes; Judith Fraussen; Piet Stinissen; Raymond Hupperts; Veerle Somers

Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.


Journal of Immunology | 2016

Age-Associated B Cells with Proinflammatory Characteristics Are Expanded in a Proportion of Multiple Sclerosis Patients

Nele Claes; Judith Fraussen; Marjan Vanheusden; Niels Hellings; Piet Stinissen; Bart Van Wijmeersch; Raymond Hupperts; Veerle Somers

Immune aging occurs in the elderly and in autoimmune diseases. Recently, IgD−CD27− (double negative, DN) and CD21−CD11c+ (CD21low) B cells were described as age-associated B cells with proinflammatory characteristics. This study investigated the prevalence and functional characteristics of DN and CD21low B cells in multiple sclerosis (MS) patients. Using flow cytometry, we demonstrated a higher proportion of MS patients younger than 60 y with peripheral expansions of DN (8/41) and CD21low (9/41) B cells compared with age-matched healthy donors (1/33 and 2/33, respectively), which indicates an increase in age-associated B cells in MS patients. The majority of DN B cells had an IgG+ memory phenotype, whereas CD21low B cells consisted of a mixed population of CD27− naive, CD27+ memory, IgG+, and IgM+ cells. DN B cells showed similar (MS patients) or increased (healthy donors) MHC-II expression as class-switched memory B cells and intermediate costimulatory molecule expression between naive and class-switched memory B cells, indicating their potential to induce (proinflammatory) T cell responses. Further, DN B cells produced proinflammatory and cytotoxic cytokines following ex vivo stimulation. Increased frequencies of DN and CD21low B cells were found in the cerebrospinal fluid of MS patients compared with paired peripheral blood. In conclusion, a proportion of MS patients showed increased peripheral expansions of age-associated B cells. DN and CD21low B cell frequencies were further increased in MS cerebrospinal fluid. These cells could contribute to inflammation by induction of T cell responses and the production of proinflammatory cytokines.


Autoimmunity Reviews | 2016

B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression.

Judith Fraussen; Laura de Bock; Veerle Somers

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination, axonal degeneration and gliosis. The progressive form of MS is an important research topic as not much is known about its underlying mechanisms and no therapy is available. Although progressive MS is traditionally considered to be driven by neurodegeneration, compartmentalized CNS inflammation is currently accepted as one of the driving processes behind neurodegeneration and progression. In this review, the involvement of B cells and antibodies in progressive MS is discussed. The identification of meningeal ectopic B cell follicles in secondary progressive MS (SPMS) patients and the successful use of B cell-depleting therapy in primary progressive MS (PPMS) patients have underlined the importance of B cells in progressive MS. Proof is also available for the role of antibodies in neurodegeneration and progression in MS. Here, oligoclonal immunoglobulin M (IgM) production and autoreactive antibodies are described, with a focus on antibodies directed against sperm-associated antigen 16 (SPAG16). Further research into the role of B cells and autoantibodies in MS progression can lead to novel prognostic and theranostic opportunities.


Journal of Autoimmunity | 2010

A novel method for making human monoclonal antibodies

Judith Fraussen; Kathleen Vrolix; Pilar Martinez-Martinez; Mario Losen; Els Meulemans; M. De Baets; Piet Stinissen; Veerle Somers

Abstract We have developed a B cell immortalization method for low B cell numbers per well using simultaneous B cell stimulation by CpG2006 and B cell infection by Epstein-Barr virus (EBV), followed by an additional CpG2006 and interleukin-2 (IL-2) stimulus. Using this method, immunoglobulin G (IgG)-producing immortalized B cell lines were generated from peripheral blood IgG+CD22+ B cells with an efficiency of up to 83%. Antibody can already be obtained from the culture supernatant after 3–4 weeks. Moreover, clonality analysis demonstrated monoclonality in 87% of the resulting immortalized B cell lines. Given the high immortalization efficiency and monoclonality rate, evidence is provided that no further subcloning is necessary. An important application of this B cell immortalization method is the characterization of (autoreactive) antibodies from patients with autoimmune disease. This could eventually lead to the identification of new autoantigens, disease markers or targets for therapy.


Journal of Immunology | 2014

Sperm-Associated Antigen 16 Is a Novel Target of the Humoral Autoimmune Response in Multiple Sclerosis

Laura de Bock; Klaartje Somers; Judith Fraussen; Jerome J. A. Hendriks; Jack van Horssen; Myrthe Rouwette; Niels Hellings; Luisa M. Villar; José C. Álvarez-Cermeño; Mercedes Espiño; Raymond Hupperts; Peter Joseph Jongen; Jan Damoiseaux; Marcel M. Verbeek; Peter Paul De Deyn; Marie B. D'hooghe; Bart Van Wijmeersch; Piet Stinissen; Veerle Somers

We have previously identified eight novel autoantibody targets in the cerebrospinal fluid of multiple sclerosis (MS) patients, including sperm-associated Ag 16 (SPAG16). In the current study, we further investigated the autoantibody response against SPAG16—a protein with unknown function in the CNS—and its expression in MS pathology. Using isoelectric focusing, we detected SPAG16-specific oligoclonal bands in the cerebrospinal fluid of 5 of 23 MS patients (22%). Analysis of the anti-SPAG16 Ab reactivity in the plasma of a total of 531 donors using ELISA demonstrated significantly elevated anti-SPAG16 Ab levels (p = 0.002) in 32 of 153 MS patients (21%) compared with all other control groups with 95% specificity for the disease. To investigate the pathologic relevance of anti-SPAG16 Abs in vivo, anti-SPAG16 Abs were injected in mice with experimental autoimmune encephalomyelitis, resulting in a significant disease exacerbation. Finally, we demonstrated a consistent upregulation of SPAG16 in MS brain and experimental autoimmune encephalomyelitis spinal cord lesions, more specifically in reactive astrocytes. We conclude that SPAG16 is a novel autoantibody target in a subgroup of MS patients and in combination with other diagnostic criteria, elevated levels of anti-SPAG16 Abs could be used as a biomarker for diagnosis. Furthermore, the pathologic relevance of anti-SPAG16 Abs was shown in vivo.

Collaboration


Dive into the Judith Fraussen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Van Wijmeersch

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge