Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Lucia Gomez-Porras is active.

Publication


Featured researches published by Judith Lucia Gomez-Porras.


BMC Genomics | 2007

Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

Judith Lucia Gomez-Porras; Diego Mauricio Riaño-Pachón; Ingo Dreyer; Jorge E Mayer; Bernd Mueller-Roeber

BackgroundIn plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa).ResultsOur results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters.ConclusionOur computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues

Pawel Gajdanowicz; Erwan Michard; Michael Sandmann; Marcio Rocha; Luiz Gustavo Guedes Corrêa; Santiago J. Ramírez-Aguilar; Judith Lucia Gomez-Porras; Wendy González; Jean-Baptiste Thibaud; J. T. van Dongen; Ingo Dreyer

The essential mineral nutrient potassium (K+) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K+ contributes to plant productivity. K+ is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K+ also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K+ in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K+ circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K+ channel AKT2 taps this “potassium battery,” which then efficiently assists the plasma membrane H+-ATPase in energizing the transmembrane phloem (re)loading processes.


Frontiers in Plant Science | 2012

Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs)

Ingo Dreyer; Judith Lucia Gomez-Porras; Diego Mauricio Riaño-Pachón; Rainer Hedrich; Dietmar Geiger

Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.


Plant Biology | 2010

Roles of tandem-pore K plus channels in plants - a puzzle still to be solved

C. Voelker; Judith Lucia Gomez-Porras; Dirk Becker; S. Hamamoto; Nobuyuki Uozumi; Franco Gambale; Bernd Mueller-Roeber; K. Czempinski; Ingo Dreyer

The group of voltage-independent K(+) channels in Arabidopsis thaliana consists of six members, five tandem-pore channels (TPK1-TPK5) and a single K(ir)-like channel (KCO3). All TPK/KCO channels are located at the vacuolar membrane except for TPK4, which was shown to be a plasma membrane channel in pollen. The vacuolar channels interact with 14-3-3 proteins (also called General Regulating Factors, GRFs), indicating regulation at the level of protein-protein interactions. Here we review current knowledge about these ion channels and their genes, and highlight open questions that need to be urgently addressed in future studies to fully appreciate the physiological functions of these ion channels.


Frontiers in Plant Science | 2012

Phylogenetic Analysis of K+ Transporters in Bryophytes, Lycophytes, and Flowering Plants Indicates a Specialization of Vascular Plants

Judith Lucia Gomez-Porras; Diego Mauricio Riaño-Pachón; Begoña Benito; Rosario Haro; Kamil Sklodowski; Alonso Rodríguez-Navarro; Ingo Dreyer

As heritage from early evolution, potassium (K+) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K+ utilization after having gone ashore, despite the fact that K+ is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K+ accumulation and distribution. In the past two decades a manifold of K+ transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K+ transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K+ channel class. The first appearance of K+ release (Kout) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step.


Biophysical Journal | 2009

The Role of the C-Terminus for Functional Heteromerization of the Plant Channel KDC1

Alessia Naso; Ingo Dreyer; Laura Pedemonte; Ilaria Testa; Judith Lucia Gomez-Porras; Cesare Usai; Bernd Mueller-Rueber; Alberto Diaspro; Franco Gambale; Cristiana Picco

Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K(+) channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K(HA) domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal K(HA) domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.


Plant Signaling & Behavior | 2011

The K+ battery-regulating Arabidopsis K+ channel AKT2 is under the control of multiple post-translational steps

Michael Sandmann; Kamil Sklodowski; Pawel Gajdanowicz; Erwan Michard; Marcio Rocha; Judith Lucia Gomez-Porras; Wendy González; Luiz Gustavo Guedes Corrêa; Santiago J. Ramírez-Aguilar; Tracey Ann Cuin; Joost T. van Dongen; Jean-Baptiste Thibaud; Ingo Dreyer

Potassium (K+) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K+ in plant homeostasis was shown. It was demonstrated that K+ gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K+ channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K+ from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K+ channel.


Frontiers in Plant Science | 2016

Cooperation through Competition—Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

Stephan Schott; Braulio Valdebenito; Daniel Bustos; Judith Lucia Gomez-Porras; Tripti Sharma; Ingo Dreyer

In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the “cooperation” between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time.


New Phytologist | 2017

The potassium battery: a mobile energy source for transport processes in plant vascular tissues

Ingo Dreyer; Judith Lucia Gomez-Porras; Janin Riedelsberger

Contents 1049 I. 1049 II. 1050 III. 1050 IV. 1050 V. 1051 VI. 1051 VII. 1052 VIII. 1052 1053 References 1053 SUMMARY: Plant roots absorb potassium ions from the soil and transport them in the xylem via the transpiration stream to the shoots. There, in source tissues where sufficient chemical energy (ATP) is available, K+ is loaded into the phloem and then transported with the phloem stream to other parts of the plant; in part, transport is also back to the roots. This, at first sight, futile cycling of K+ has been uncovered to be part of a sophisticated mechanism that (1) enables the shoot to communicate its nutrient demand to the root, (2) contributes to the K+ nutrition of transport phloem tissues and (3) transports energy stored in the K+ gradient between phloem cytosol and the apoplast. This potassium battery can be tapped by opening AKT2-like potassium channels and then enables the ATP-independent energization of other transport processes, such as the reloading of sucrose. Insights into these mechanisms have only been possible by combining wet-lab and dry-lab experiments by means of computational cell biology modeling and simulations.


PLOS ONE | 2017

A synthetic multi-cellular network of coupled self-sustained oscillators

Miguel Fernández-Niño; Daniel Giraldo; Judith Lucia Gomez-Porras; Ingo Dreyer; Andrés Fernando González Barrios; Catalina Arevalo-Ferro

Engineering artificial networks from modular components is a major challenge in synthetic biology. In the past years, single units, such as switches and oscillators, were successfully constructed and implemented. The effective integration of these parts into functional artificial self-regulated networks is currently on the verge of breakthrough. Here, we describe the design of a modular higher-order synthetic genetic network assembled from two independent self-sustained synthetic units: repressilators coupled via a modified quorum-sensing circuit. The isolated communication circuit and the network of coupled oscillators were analysed in mathematical modelling and experimental approaches. We monitored clustering of cells in groups of various sizes. Within each cluster of cells, cells oscillate synchronously, whereas the theoretical modelling predicts complete synchronization of the whole cellular population to be obtained approximately after 30 days. Our data suggest that self-regulated synchronization in biological systems can occur through an intermediate, long term clustering phase. The proposed artificial multicellular network provides a system framework for exploring how a given network generates a specific behaviour.

Collaboration


Dive into the Judith Lucia Gomez-Porras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erwan Michard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge