Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Webster is active.

Publication


Featured researches published by Judith Webster.


Cell | 2012

RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3

Lígia Tavares; Emilia Dimitrova; David Oxley; Judith Webster; Raymond A. Poot; Jeroen Demmers; Karel Bezstarosti; Stephen Taylor; Hiroki Ura; Hiroshi Koide; Anton Wutz; Miguel Vidal; Sarah Elderkin; Neil Brockdorff

Summary Polycomb-repressive complex 1 (PRC1) has a central role in the regulation of heritable gene silencing during differentiation and development. PRC1 recruitment is generally attributed to interaction of the chromodomain of the core protein Polycomb with trimethyl histone H3K27 (H3K27me3), catalyzed by a second complex, PRC2. Unexpectedly we find that RING1B, the catalytic subunit of PRC1, and associated monoubiquitylation of histone H2A are targeted to closely overlapping sites in wild-type and PRC2-deficient mouse embryonic stem cells (mESCs), demonstrating an H3K27me3-independent pathway for recruitment of PRC1 activity. We show that this pathway is mediated by RYBP-PRC1, a complex comprising catalytic subunits of PRC1 and the protein RYBP. RYBP-PRC1 is recruited to target loci in mESCs and is also involved in Xist RNA-mediated silencing, the latter suggesting a wider role in Polycomb silencing. We discuss the implications of these findings for understanding recruitment and function of Polycomb repressors.


Molecular Cell | 2011

Maintenance of Silent Chromatin through Replication Requires SWI/SNF-like Chromatin Remodeler SMARCAD1

Samuel P. Rowbotham; Leila Barki; Ana Neves-Costa; Fátima Santos; Wendy Dean; Nicola Hawkes; Parul Choudhary; W. Ryan Will; Judith Webster; David Oxley; Catherine M. Green; Patrick Varga-Weisz; Jacqueline E. Mermoud

Epigenetic marks such as posttranslational histone modifications specify the functional states of underlying DNA sequences, though how they are maintained after their disruption during DNA replication remains a critical question. We identify the mammalian SWI/SNF-like protein SMARCAD1 as a key factor required for the re-establishment of repressive chromatin. The ATPase activity of SMARCAD1 is necessary for global deacetylation of histones H3/H4. In this way, SMARCAD1 promotes methylation of H3K9, the establishment of heterochromatin, and faithful chromosome segregation. SMARCAD1 associates with transcriptional repressors including KAP1, histone deacetylases HDAC1/2 and the histone methyltransferase G9a/GLP and modulates the interaction of HDAC1 and KAP1 with heterochromatin. SMARCAD1 directly interacts with PCNA, a central component of the replication machinery, and is recruited to sites of DNA replication. Our findings suggest that chromatin remodeling by SMARCAD1 ensures that silenced loci, such as pericentric heterochromatin, are correctly perpetuated.


American Journal of Botany | 2006

Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose

Sarah E.C. Whitney; Elaine Wilson; Judith Webster; Antony Bacic; J. S. Grant Reid; Michael J. Gidley

A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific fucose and/or galactose residues.


Molecular and Cellular Biology | 2010

Fission Yeast Iec1-Ino80-Mediated Nucleosome Eviction Regulates Nucleotide and Phosphate Metabolism

Cassandra Hogan; Sofia Aligianni; Mickaël Durand-Dubief; Jenna Persson; William Ryan Will; Judith Webster; Linda J. Wheeler; Christopher K. Mathews; Sarah Elderkin; David Oxley; Karl Ekwall; Patrick Varga-Weisz

ABSTRACT Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.


Methods of Molecular Biology | 2012

Protein Identification by MALDI-TOF Mass Spectrometry

Judith Webster; David Oxley

MALDI-TOF mass spectrometers are now commonplace and their relative ease of use means that most non-specialist labs can readily access the technology for the rapid and sensitive analysis of biomolecules. One of the main uses of MALDI-TOF-MS is in the identification of proteins, by peptide mass fingerprinting (PMF). Here we describe a simple protocol that can be performed in a standard biochemistry laboratory, whereby proteins separated by 1D or 2D gel electrophoresis can be identified at femtomole levels. The procedure involves excision of the spot or band from the gel, washing and destaining, reduction and alkylation, in-gel trypsin digestion, MALDI-TOF-MS of the tryptic peptides and database searching of the PMF data. Up to 96 protein samples can easily be manually processed at one time by this method.


Archive | 2005

Peptide Mass Fingerprinting

Judith Webster; David Oxley

Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) is now routinely used in many laboratories for the rapid and sensitive identification of proteins by peptide mass fingerprinting (PMF). We describe a simple protocol that can be performed in a standard biochemistry laboratory, whereby proteins separated by one- or two-dimensional gel electrophoresis can be identified at femtomole levels. The procedure involves excision of the spot or band from the gel, washing and de-staining, reduction and alkylation, in-gel trypsin digestion, MALDI-TOF MS of the tryptic peptides, and database searching of the PMF data. Up to 96 protein samples can easily be manually processed at one time by this method.


PLOS ONE | 2013

The Immune System GTPase GIMAP6 Interacts with the Atg8 Homologue GABARAPL2 and Is Recruited to Autophagosomes

John C. Pascall; Sergio Rotondo; Aamir S. Mukadam; David Oxley; Judith Webster; Simon Walker; Jerry Piron; Christine Carter; Nicholas T. Ktistakis; Geoffrey W. Butcher

The GIMAPs (GTPases of the immunity-associated proteins) are a family of small GTPases expressed prominently in the immune systems of mammals and other vertebrates. In mammals, studies of mutant or genetically-modified rodents have indicated important roles for the GIMAP GTPases in the development and survival of lymphocytes. No clear picture has yet emerged, however, of the molecular mechanisms by which they perform their function(s). Using biotin tag-affinity purification we identified a major, and highly specific, interaction between the human cytosolic family member GIMAP6 and GABARAPL2, one of the mammalian homologues of the yeast autophagy protein Atg8. Chemical cross-linking studies performed on Jurkat T cells, which express both GIMAP6 and GABARAPL2 endogenously, indicated that the two proteins in these cells readily associate with one another in the cytosol under normal conditions. The GIMAP6-GABARAPL2 interaction was disrupted by deletion of the last 10 amino acids of GIMAP6. The N-terminal region of GIMAP6, however, which includes a putative Atg8-family interacting motif, was not required. Over-expression of GIMAP6 resulted in increased levels of endogenous GABARAPL2 in cells. After culture of cells in starvation medium, GIMAP6 was found to localise in punctate structures with both GABARAPL2 and the autophagosomal marker MAP1LC3B, indicating that GIMAP6 re-locates to autophagosomes on starvation. Consistent with this finding, we have demonstrated that starvation of Jurkat T cells results in the degradation of GIMAP6. Whilst these findings raise the possibility that the GIMAPs play roles in the regulation of autophagy, we have been unable to demonstrate an effect of GIMAP6 over-expression on autophagic flux.


Biochimica et Biophysica Acta | 2009

Effect of enzymatic deimination on the conformation of recombinant prion protein

Duncan S. Young; Filip Meersman; David Oxley; Judith Webster; Andrew C. Gill; Igor B. Bronstein; Christopher R. Lowe; Denise V. Dear

Deimination is the post-translational conversion of arginine residues to citrulline. It has been implicated as a causative factor in autoimmune diseases such as multiple sclerosis and rheumatoid arthritis and more recently, as a marker of neurodegeneration. We have investigated the effect of the post-translational modification of arginine residues on the structure of recombinant ovine prion protein. Deiminated prion protein exhibited biophysical properties characteristic of the scrapie-associated conformer of prion protein viz. an increased beta-sheet secondary structure, congophilic structures indicative of amyloid and proteinase K resistance which could be templated onto normal unmodified prion protein. In the light of these findings, a potential role of post-translational modifications to prion protein in disease initiation or propagation is discussed.


Archive | 2009

Protein Identification by Peptide Mass Fingerprinting using MALDI-TOF Mass Spectrometry

Judith Webster; David Oxley

Developments in mass spectrometry technology, together with the availability of extensive DNA and protein sequence databases and software tools for data mining, has made possible rapid and sensitive mass spectrometry-based procedures for protein identification. Two basic types of mass spectrometers are commonly used for this purpose; MALDI-TOF-MS and ESI-MS. MALDI-TOF instruments are now quite common in biochemistry laboratories and are very simple to use, requiring no special training. ESI instruments, usually coupled to capillary/nanoLC systems, are more complex and require expert operators. We will therefore focus on the use of MALDI-TOF-MS, although the sample preparation is identical for both methods. The principle behind the use of MALDI-TOF-MS for protein identification is that the digestion of a protein with a specific protease will generate a mixture of peptides unique to that protein. Measuring the molecular masses of these peptides then gives a characteristic dataset called a peptide mass fingerprint (PMF) (1). The PMF data can then be compared with theoretical peptide molecular masses that would be generated by using the same protease to digest each protein in the sequence database, to find the best match. Provided the protein being analyzed is present in the database being searched and the data is of sufficient quality, the best match should be the correct protein. In order to judge the validity of a protein identification by this method, some means of scoring the quality of the match must be used. The procedure described here involves cutting protein bands or spots from 1-D or 2-D PAGE gels, destaining the gel pieces, reducing and alkylating the


Methods of Molecular Biology | 2005

Peptide mass fingerprinting: protein identification using MALDI-TOF mass spectrometry.

Judith Webster; David Oxley

Collaboration


Dive into the Judith Webster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filip Meersman

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Antony Bacic

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge