Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Elderkin is active.

Publication


Featured researches published by Sarah Elderkin.


Cell | 2012

RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3

Lígia Tavares; Emilia Dimitrova; David Oxley; Judith Webster; Raymond A. Poot; Jeroen Demmers; Karel Bezstarosti; Stephen Taylor; Hiroki Ura; Hiroshi Koide; Anton Wutz; Miguel Vidal; Sarah Elderkin; Neil Brockdorff

Summary Polycomb-repressive complex 1 (PRC1) has a central role in the regulation of heritable gene silencing during differentiation and development. PRC1 recruitment is generally attributed to interaction of the chromodomain of the core protein Polycomb with trimethyl histone H3K27 (H3K27me3), catalyzed by a second complex, PRC2. Unexpectedly we find that RING1B, the catalytic subunit of PRC1, and associated monoubiquitylation of histone H2A are targeted to closely overlapping sites in wild-type and PRC2-deficient mouse embryonic stem cells (mESCs), demonstrating an H3K27me3-independent pathway for recruitment of PRC1 activity. We show that this pathway is mediated by RYBP-PRC1, a complex comprising catalytic subunits of PRC1 and the protein RYBP. RYBP-PRC1 is recruited to target loci in mESCs and is also involved in Xist RNA-mediated silencing, the latter suggesting a wider role in Polycomb silencing. We discuss the implications of these findings for understanding recruitment and function of Polycomb repressors.


Cell Reports | 2014

Targeting Polycomb to Pericentric Heterochromatin in Embryonic Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment

Sarah Cooper; Martin Dienstbier; R Hassan; Lothar Schermelleh; Jafar Sharif; Neil P. Blackledge; V De Marco; Sarah Elderkin; Haruhiko Koseki; Robert J. Klose; Andreas Heger; Neil Brockdorff

Summary The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.


Genome Research | 2015

The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements

Stefan Schoenfelder; Mayra Furlan-Magaril; Borbala Mifsud; Filipe Tavares-Cadete; Robert Sugar; Biola-Maria Javierre; Takashi Nagano; Yulia Katsman; Moorthy Sakthidevi; Steven W. Wingett; Emilia Dimitrova; Andrew Dimond; Lucas Brandon Edelman; Sarah Elderkin; Kristina Tabbada; Elodie Darbo; Simon Andrews; Bram Herman; Andy Higgs; Emily LeProust; Cameron S. Osborne; Jennifer A. Mitchell; Nicholas M. Luscombe; Peter Fraser

The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.


Nature Genetics | 2015

Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome.

Stefan Schoenfelder; Robert Sugar; Andrew Dimond; Biola-Maria Javierre; Harry Armstrong; Borbala Mifsud; Emilia Dimitrova; Louise S. Matheson; Filipe Tavares-Cadete; Mayra Furlan-Magaril; Anne Segonds-Pichon; Wiktor Jurkowski; Steven W. Wingett; Kristina Tabbada; Simon Andrews; Bram Herman; Emily LeProust; Cameron S. Osborne; Haruhiko Koseki; Peter Fraser; Nicholas M. Luscombe; Sarah Elderkin

The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.


The EMBO Journal | 2010

Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor

Goedele N. Maertens; Selma El Messaoudi-Aubert; Sarah Elderkin; Kevin Hiom; Gordon Peters

An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono‐ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin‐specific proteases, USP7 and USP11, co‐purify with human PRC1‐type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de‐repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence‐like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.


Molecular Cell | 2004

The Histone-Fold Protein Complex CHRAC-15/17 Enhances Nucleosome Sliding and Assembly Mediated by ACF

Iwao Kukimoto; Sarah Elderkin; Margaret Grimaldi; Thomas Oelgeschläger; Patrick Varga-Weisz

The histone fold is a structural motif with which two related proteins interact and is found in complexes involved in wrapping DNA, the nucleosome, and transcriptional regulation, as in NC2. We reveal a novel function for histone-fold proteins: facilitation of nucleosome remodeling. ACF1-ISWI complex (ATP-dependent chromatin assembly and remodeling factor [ACF]) associates with histone-fold proteins (CHRAC-15 and CHRAC-17 in the human chromatin accessibility complex [CHRAC]) whose functional relevance has been unclear. We show that these histone-fold proteins facilitate ATP-dependent nucleosome sliding by ACF. Direct interaction of the CHRAC-15/17 complex with the ACF1 subunit is essential for this process. CHRAC-17 interacts with another histone-fold protein, p12, in DNA polymerase epsilon, but CHRAC-15 is essential for interaction with ACF and enhancement of nucleosome sliding. Surprisingly, CHRAC-15/17, p12/CHRAC-17, and NC2 complexes facilitate ACF-mediated chromatin assembly by a mechanism different from nucleosome sliding enhancement, suggesting a general activity of H2A/H2B type histone-fold complexes in chromatin assembly.


Journal of Bacteriology | 2005

Molecular Determinants for PspA-Mediated Repression of the AAA Transcriptional Activator PspF

Sarah Elderkin; Patricia Bordes; Susan Jones; Mathieu Rappas; Martin Buck

The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal alpha-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.


Molecular and Cellular Biology | 2010

Fission Yeast Iec1-Ino80-Mediated Nucleosome Eviction Regulates Nucleotide and Phosphate Metabolism

Cassandra Hogan; Sofia Aligianni; Mickaël Durand-Dubief; Jenna Persson; William Ryan Will; Judith Webster; Linda J. Wheeler; Christopher K. Mathews; Sarah Elderkin; David Oxley; Karl Ekwall; Patrick Varga-Weisz

ABSTRACT Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.


Genes & Development | 2016

The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells

Clara Lopes Novo; Calvin Tang; Kashif Ahmed; Ugljesa Djuric; Eden Fussner; Nicholas P. Mullin; Natasha P. Morgan; Jasvinder Hayre; Arnold R. Sienerth; Sarah Elderkin; Ryuichi Nishinakamura; Ian Chambers; James Ellis; David P. Bazett-Jones; Peter J. Rugg-Gunn

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Nature Communications | 2017

Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression

Gozde Kar; Jong Kyoung Kim; Aleksandra A. Kolodziejczyk; Kedar Nath Natarajan; Elena Torlai Triglia; Borbala Mifsud; Sarah Elderkin; John C. Marioni; Ana Pombo; Sarah A. Teichmann

Polycomb repressive complexes (PRCs) are important histone modifiers, which silence gene expression; yet, there exists a subset of PRC-bound genes actively transcribed by RNA polymerase II (RNAPII). It is likely that the role of Polycomb repressive complex is to dampen expression of these PRC-active genes. However, it is unclear how this flipping between chromatin states alters the kinetics of transcription. Here, we integrate histone modifications and RNAPII states derived from bulk ChIP-seq data with single-cell RNA-sequencing data. We find that Polycomb repressive complex-active genes have greater cell-to-cell variation in expression than active genes, and these results are validated by knockout experiments. We also show that PRC-active genes are clustered on chromosomes in both two and three dimensions, and interactions with active enhancers promote a stabilization of gene expression noise. These findings provide new insights into how chromatin regulation modulates stochastic gene expression and transcriptional bursting, with implications for regulation of pluripotency and development.Polycomb repressive complexes modify histones but it is unclear how changes in chromatin states alter kinetics of transcription. Here, the authors use single-cell RNAseq and ChIPseq to find that actively transcribed genes with Polycomb marks have greater cell-to-cell variation in expression.

Collaboration


Dive into the Sarah Elderkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Borbala Mifsud

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Hiom

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge