Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judson M. Englert is active.

Publication


Featured researches published by Judson M. Englert.


American Journal of Pathology | 2008

A Role for the Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis

Judson M. Englert; Lana E. Hanford; Naftali Kaminski; Jacob M. Tobolewski; Roderick J. Tan; Cheryl L. Fattman; Lasse Ramsgaard; Thomas J. Richards; Inna Loutaev; Peter P. Nawroth; Michael Kasper; Angelika Bierhaus; Tim D. Oury

Idiopathic pulmonary fibrosis (IPF) is a severely debilitating disease associated with a dismal prognosis. There are currently no effective therapies for IPF, thus the identification of novel therapeutic targets is greatly needed. The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation has been linked to various pathologies. In healthy adult animals, RAGE is expressed at the highest levels in the lung compared to other tissues. To investigate the hypothesis that RAGE is involved in IPF pathogenesis, we have examined its expression in two mouse models of pulmonary fibrosis and in human tissue from IPF patients. In each instance we observed a depletion of membrane RAGE and its soluble (decoy) isoform, sRAGE, in fibrotic lungs. In contrast to other diseases in which RAGE signaling promotes pathology, immunohistochemical and hydroxyproline quantification studies on aged RAGE-null mice indicate that these mice spontaneously develop pulmonary fibrosis-like alterations. Furthermore, when subjected to a model of pulmonary fibrosis, RAGE-null mice developed more severe fibrosis, as measured by hydroxyproline assay and histological scoring, than wild-type controls. Combined with data from other studies on mouse models of pulmonary fibrosis and human IPF tissues indicate that loss of RAGE contributes to IPF pathogenesis.


Journal of Biological Chemistry | 2009

Oxidative Stress Alters Syndecan-1 Distribution in Lungs with Pulmonary Fibrosis *□

Corrine R. Kliment; Judson M. Englert; Bernadette R. Gochuico; Guoying Yu; Naftali Kaminski; Ivan O. Rosas; Tim D. Oury

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.


American Journal of Pathology | 2012

The Receptor for Advanced Glycation End Products Is a Central Mediator of Asthma Pathogenesis

Pavle S. Milutinovic; John F. Alcorn; Judson M. Englert; Lauren T. Crum; Tim D. Oury

The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been shown to contribute to the pathogenesis of diabetes, atherosclerosis, and neurodegeneration. However, its role in asthma and allergic airway disease is largely unknown. These studies use a house dust mite (HDM) mouse model of asthma/allergic airway disease. Respiratory mechanics were assessed and compared between wild-type and RAGE knockout mice. Bronchovascular architecture was assessed with quantitative scoring, and expression of RAGE, immunoglobulins, and relevant cytokines was assessed by standard protein detection methods and/or quantitative RT-PCR. The absence of RAGE abolishes most assessed measures of pathology, including airway hypersensitivity (resistance, tissue damping, and elastance), eosinophilic inflammation, and airway remodeling. IL-4 secretion, isotype class switching, and antigen recognition are intact in the absence of RAGE. In contrast, normal increases in IL-5, IL-13, eotaxin, and eotaxin-2 production are abrogated in the RAGE knockouts. IL-17 indicates complex regulation, with elevated baseline expression in RAGE knockouts, but no induction in response to allergen. Treatment of WT mice with an inhibitor of RAGE markedly reduces inflammation in the HDM model, suggesting that RAGE inhibition may serve as a promising therapeutic strategy. Finally, the results in the HDM model are recapitulated in an ovalbumin model of asthma, suggesting that RAGE plays a role in asthma irrespective of the identity of the allergens involved.


PLOS ONE | 2011

Lack of the Receptor for Advanced Glycation End-Products Attenuates E. coli Pneumonia in Mice

Lasse Ramsgaard; Judson M. Englert; Michelle L. Manni; Pavle S. Milutinovic; Julia V. Gefter; Jacob M. Tobolewski; Lauren T. Crum; Gina M. Coudriet; Jon D. Piganelli; Ruben Zamora; Yoram Vodovotz; Jan J. Enghild; Tim D. Oury

Background The receptor for advanced glycation end-products (RAGE) has been suggested to modulate lung injury in models of acute pulmonary inflammation. To study this further, model systems utilizing wild type and RAGE knockout (KO) mice were used to determine the role of RAGE signaling in lipopolysaccharide (LPS) and E. coli induced acute pulmonary inflammation. The effect of intraperitoneal (i.p.) and intratracheal (i.t.) administration of mouse soluble RAGE on E. coli injury was also investigated. Methodology/Principal Findings C57BL/6 wild type and RAGE KO mice received an i.t. instillation of LPS, E. coli, or vehicle control. Some groups also received i.p. or i.t. administration of mouse soluble RAGE. After 24 hours, the role of RAGE expression on inflammation was assessed by comparing responses in wild type and RAGE KO. RAGE protein levels decreased in wild type lung homogenates after treatment with either LPS or bacteria. In addition, soluble RAGE and HMGB1 increased in the BALF after E. coli instillation. RAGE KO mice challenged with LPS had the same degree of inflammation as wild type mice. However, when challenged with E. coli, RAGE KO mice had significantly less inflammation when compared to wild type mice. Most cytokine levels were lower in the BALF of RAGE KO mice compared to wild type mice after E. coli injury, while only monocyte chemotactic protein-1, MCP-1, was lower after LPS challenge. Neither i.p. nor i.t. administration of mouse soluble RAGE attenuated the severity of E. coli injury in wild type mice. Conclusions/Significance Lack of RAGE in the lung does not protect against LPS induced acute pulmonary inflammation, but attenuates injury following live E. coli challenge. These findings suggest that RAGE mediates responses to E. coli-associated pathogen-associated molecular pattern molecules other than LPS or other bacterial specific signaling responses. Soluble RAGE treatment had no effect on inflammation.


Archive | 2014

Experimental Models of Asbestos-Related Diseases

Judson M. Englert; Corrine R. Kliment; Tim D. Oury

Much of our understanding of the mechanisms by which asbestos injures the lung has been derived from experimental animal studies. Such studies have confirmed the fibrogenic and carcinogenic properties of asbestos fibers that have been surmised from human observations and have provided insights into the ways in which asbestos fibers interact with biological systems. Models commonly used to study asbestos-induced disease involve inhalation exposure to asbestos, intratracheal instillation, and in vitro studies of various cellular systems. Each of these techniques has particular advantages and disadvantages.


PLOS ONE | 2010

The Role of the Receptor for Advanced Glycation End-Products in a Murine Model of Silicosis

Lasse Ramsgaard; Judson M. Englert; Jacob M. Tobolewski; Lauren Tomai; Cheryl L. Fattman; Adriana S. Leme; A. Murat Kaynar; Steven D. Shapiro; Jan J. Enghild; Tim D. Oury

Background The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated. Methodology/Principal Findings Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-β levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice. Conclusions/Significance Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury.


Protein Expression and Purification | 2008

Large scale isolation and purification of soluble RAGE from lung tissue.

Judson M. Englert; Lasse Ramsgaard; Zuzana Valnickova; Jan J. Enghild; Tim D. Oury

The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.


PLOS ONE | 2014

Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products

Pavle S. Milutinovic; Judson M. Englert; Lauren T. Crum; Neale Scott Mason; Lasse Ramsgaard; Jan J. Enghild; Louis J. Sparvero; Michael T. Lotze; Tim D. Oury

Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.


International Journal of Clinical and Experimental Pathology | 2011

A novel method for accurate collagen and biochemical assessment of pulmonary tissue utilizing one animal.

Corrine R. Kliment; Judson M. Englert; Lauren P. Crum; Tim D. Oury


International Journal of Clinical and Experimental Pathology | 2011

Paradoxical function for the receptor for advanced glycation end products in mouse models of pulmonary fibrosis

Judson M. Englert; Corrine R. Kliment; Lasse Ramsgaard; Pavle S. Milutinovic; Lauren T. Crum; Jacob M. Tobolewski; Tim D. Oury

Collaboration


Dive into the Judson M. Englert's collaboration.

Top Co-Authors

Avatar

Tim D. Oury

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren T. Crum

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge