Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy A. King is active.

Publication


Featured researches published by Judy A. King.


Circulation Research | 2006

Transient Receptor Potential Vanilloid 4-Mediated Disruption of the Alveolar Septal Barrier. A Novel Mechanism of Acute Lung Injury

Diego F. Alvarez; Judy A. King; David S. Weber; Emile Addison; Wolfgang Liedtke; Mary I. Townsley

Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4α-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4α-phorbol-12,13-didecanoate was absent in TRPV4−/− mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.


Translational Research | 2008

Activated leukocyte cell adhesion molecule: a new paradox in cancer

Solomon F. Ofori-Acquah; Judy A. King

The activated leukocyte cell adhesion molecule [ALCAM/CD166/melanoma metastasis clone D (MEMD)] is an immunoglobulin superfamily cell adhesion molecule. It is expressed developmentally in cells of all 3 embryonic lineages. The ALCAM expression is limited to subsets of cells in most adult tissues. ALCAM is localized at intercellular junctions in epithelium presumably as part of the adhesive complex that maintains tissue architecture. Over the past decade, alterations in expression of ALCAM have been reported in several human tumors (melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer, and esophageal squamous cell carcinoma). This review summarizes the current knowledge of the role of ALCAM in malignancies.


Breast Cancer Research | 2004

Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator

Judy A. King; Solomon F. Ofori-Acquah; Troy Stevens; Abu Bakr Al-Mehdi; Øystein Fodstad; Wen Guo Jiang

IntroductionActivated leukocyte cell adhesion molecule (ALCAM) (CD166) is an immunoglobulin molecule that has been implicated in cell migration. The present study examined the expression of ALCAM in human breast cancer and assessed its prognostic value.MethodsThe immunohistochemical distribution and location of ALCAM was assessed in normal breast tissue and carcinoma. The levels of ALCAM transcripts in frozen tissue (normal breast, n = 32; breast cancer, n = 120) were determined using real-time quantitative PCR. The results were then analyzed in relation to clinical data including the tumor type, the grade, the nodal involvement, distant metastases, the tumor, node, metastasis (TNM) stage, the Nottingham Prognostic Index (NPI), and survival over a 6-year follow-up period.ResultsImmunohistochemical staining on tissue sections in ducts/acini in normal breast and in breast carcinoma was ALCAM-positive. Differences in the number of ALCAM transcripts were found in different types of breast cancer. The level of ALCAM transcripts was lower (P = 0.05) in tumors from patients who had metastases to regional lymph nodes compared with those patients without, in higher grade tumors compared with Grade 1 tumors (P < 0.01), and in TNM Stage 3 tumors compared with TNM Stage 1 tumors (P < 0.01). Tumors from patients with poor prognosis (with NPI > 5.4) had significantly lower levels (P = 0.014) of ALCAM transcripts compared with patients with good prognosis (with NPI < 3.4), and tumors from patients with local recurrence had significantly lower levels than those patients without local recurrence or metastases (P = 0.04). Notably, tumors from patients who died of breast cancer had significantly lower levels of ALCAM transcripts (P = 0.0041) than those with primary tumors but no metastatic disease or local recurrence. Patients with low levels of ALCAM transcripts had significantly (P = 0.009) more incidents (metastasis, recurrence, death) compared with patients with primary breast tumors with high levels of ALCAM transcripts.ConclusionsIn the present panel of breast cancer specimens, decreased levels of ALCAM correlated with the nodal involvement, the grade, the TNM stage, the NPI, and the clinical outcome (local recurrence and death). The data suggest that decreased ALCAM expression is of clinical significance in breast cancer, and that reduced expression indicates a more aggressive phenotype and poor prognosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

TRPV4 channels augment macrophage activation and ventilator-induced lung injury

Kazutoshi Hamanaka; Ming-Yuan Jian; Mary I. Townsley; Judy A. King; Wolfgang Liedtke; David S. Weber; Fabien G. Eyal; Mary M. Clapp; James C. Parker

We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration coefficients (K(f)) measured in isolated perfused lungs after ventilation with successive 30-min periods of 9, 25, and 35 cmH(2)O PIP did not significantly increase in lungs from TRPV4(-/-) mice but increased >2.2-fold in TRPV4(+/+) lungs, TRPV4(+/+) lungs instilled with TRPV4(-/-) macrophages, and TRPV4(-/-) lungs instilled with TRPV4(+/+) macrophages after ventilation with 35 cmH(2)O PIP. Activation of TRPV4 with 4-alpha-phorbol didecanoate (4alphaPDD) significantly increased intracellular calcium, superoxide, and nitric oxide production in TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. Cross-sectional areas increased nearly 3-fold in TRPV4(+/+) macrophages compared with TRPV4(-/-) macrophages after 4alphaPDD. Immunohistochemistry staining of lung tissue for nitrotyrosine revealed increased amounts in high PIP ventilated TRPV4(+/+) lungs compared with low PIP ventilated TRPV4(+/+) or high PIP ventilated TRPV4(-/-) lungs. Thus TRPV4(+/+) macrophages restored susceptibility of TRPV4(-/-) lungs to mechanical injury. A TRPV4 agonist increased intracellular calcium and reactive oxygen and nitrogen species in harvested TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. K(f) increases correlated with tissue nitrotyrosine, a marker of peroxynitrite production.


Circulation Research | 2004

Paradoxical cAMP-Induced Lung Endothelial Hyperpermeability Revealed by Pseudomonas aeruginosa ExoY

Sarah Sayner; Dara W. Frank; Judy A. King; Hairu Chen; John VandeWaa; Troy Stevens

Mammalian transmembrane adenylyl cyclases synthesize a restricted plasmalemmal cAMP pool that is intensely endothelial barrier protective. Bacteria have devised mechanisms of transferring eukaryotic factor–dependent adenylyl cyclases into mammalian cells. Pseudomonas aeruginosa ExoY is one such enzyme that catalyzes cytosolic cAMP synthesis, with unknown function. Pseudomonas aeruginosa genetically modified to introduce only the ExoY toxin elevated cAMP 800-fold in pulmonary microvascular endothelial cells over 4 hours, whereas a catalytically deficient (ExoYK81M) strain did not increase cAMP. ExoY-derived cAMP was localized to a cytosolic microdomain not regulated by phosphodiesterase activity. In contrast to the barrier-enhancing actions of plasmalemmal cAMP, the ExoY cytosolic cAMP pool induced endothelial gap formation and increased the filtration coefficient in the isolated perfused lung. These findings collectively illustrate a previously unrecognized mechanism of hyperpermeability induced by rises in cytosolic cAMP.


Circulation Research | 2006

Transient Receptor Potential Vanilloid 4–Mediated Disruption of the Alveolar Septal Barrier

Diego F. Alvarez; Judy A. King; David S. Weber; Emile Addison; Wolfgang Liedtke; Mary I. Townsley

Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4α-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4α-phorbol-12,13-didecanoate was absent in TRPV4−/− mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.


Inhalation Toxicology | 2006

Perspectives on Pulmonary Inflammation and Lung Cancer Risk in Cigarette Smokers

Carr J. Smith; Thomas Albert Perfetti; Judy A. King

Cigarette mainstream smoke (MSS) inhaled by smokers is a complex aerosol composed of minute liquid droplets suspended within a mixture of combustion gases (CO, CO2, NOx, etc.) and semivolatile compounds. The minute liquid droplets represent the particulate or “tar” phase, while the combustion gases and semivolatiles comprise the vapor phase. For historical and technical reasons, the vast majority of studies on the carcinogenicity of MSS have focused on the particulate phase. The particulate phase is mutagenic and cytotoxic in vitro, proinflammatory, and promotes tumor formation in animal models. In addition to cytotoxic compounds found in the particulate phase, the vapor phase of MSS contains a number of cytotoxic constituents including reactive aldehydes and carbonyls capable of damaging cells and inducing pulmonary inflammation. A large body of evidence suggests that smoking-induced pulmonary inflammation may play an important role in increasing lung cancer risk in smokers. Use of aspirin and nonsteroidal anti-inflammatory drugs is associated with reduced cancer development in animal models and lower lung cancer rates in smokers. A number of benign nonpulmonary and pulmonary diseases characterized by chronic inflammation increase the risk of cancer at the affected site in the absence of chemical exposure. Animal models displaying tumorigenic responses following exposure to either whole smoke or smoke fractions show elevated rates of cellular proliferation. A relationship between pulmonary inflammation and lung cancer is mechanistically plausible because inflammatory cells secrete activated oxygen species, inflammatory mediators, and proteolytic enzymes that can both damage DNA and lead to increases in reparative cell proliferation rates.


FEBS Letters | 2006

Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration.

Andrius Masedunskas; Judy A. King; Ruth Cochran; Troy Stevens; Dmitri Sviridov; Solomon F. Ofori-Acquah

Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell–cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co‐expression of ALCAM by activated monocytes and endothelial cells.


Experimental Hematology | 2010

Human embryonic stem cell−derived vascular progenitor cells capable of endothelial and smooth muscle cell function

Katherine L. Hill; Petra Obrtlikova; Diego F. Alvarez; Judy A. King; Susan A. Keirstead; Jeremy R. Allred; Dan S. Kaufman

OBJECTIVE Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34(+) cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization. MATERIALS AND METHODS hESCs are cocultured on M2-10B4 stromal cells or Wnt1-expressing M2-10B4 for 13 to 15 days to generate a CD34(+) cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin-coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24 to 48 hours. RESULTS CD34(+) vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell-specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when cocultured in Matrigel. Human umbilical vein endothelial cells cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1-overexpressing stromal cells produced an increased number of progenitor cells. CONCLUSIONS The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The stepwise differentiation outlined here is an efficient, reproducible method with potential for large-scale cultures suitable for clinical applications.


Breast Cancer Research | 2008

Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer

Aparna Mitra; Rebecca A. Fillmore; Brandon J. Metge; Mathur Rajesh; Yaguang Xi; Judy A. King; Jingfang Ju; Lewis K. Pannell; Lalita A. Shevde; Rajeev S. Samant

IntroductionMammalian relative of DnaJ (MRJ [DNAJB6]), a novel member of the human DnaJ family, has two isoforms. The smaller isoform, MRJ(S), is studied mainly for its possible role in Huntingtons disease. There are no reports of any biologic activity of the longer isoform, MRJ(L). We investigated whether this molecule plays any role in breast cancer. Our studies were prompted by interesting observations we made regarding the expression of MRJ in breast cancer cell lines and breast cancer tissue microarrays, as described below.MethodsExpression of MRJ(L) from several breast cancer cell lines was evaluated using real-time PCR. Relative levels of the small and large isoforms in breast cancer cell lines were studied using Western blot analysis. A breast cancer progression tissue microarray was probed using anti-MRJ antibody. MRJ(L) was ectopically expressed in two breast cancer cell lines. These cell lines were evaluated for their in vitro correlates of tumor aggressiveness, such as invasion, migration, and anchorage independence. The cell lines were also evaluated for in vivo tumor growth and metastasis. The secreted proteome of the MRJ(L) expressors was analyzed to elucidate the biochemical changes brought about by re-expression of MRJ(L).ResultsWe found that MRJ(L) is expressed at a significantly lower level in aggressive breast cancer cell lines compared with normal breast. Furthermore, in clinical cases of breast cancer expression of MRJ is lost as the grade of infiltrating ductal carcinoma advances. Importantly, MRJ staining is lost in those cases that also had lymph node metastasis. We report that MRJ(L) is a protein with a functional nuclear localization sequence. Expression of MRJ(L) via an exogenous promoter in breast cancer cell line MDA-MB-231 and in MDA-MB-435 (a cell line that metastasizes from the mammary fat pad) decreases their migration and invasion, reduces their motility, and significantly reduces orthotopic tumor growth in nude mice. Moreover, the secreted proteome of the MRJ(L)-expressing cells exhibited reduced levels of tumor progression and metastasis promoting secreted proteins, such as SPP1 (osteopontin), AZGP1 (zinc binding α2-glycoprotein 1), SPARC (osteonectin), NPM1 (nucleophosmin) and VGF (VGF nerve growth factor inducible). On the other hand, levels of the secreted metastasis-suppressor KiSS1 (melanoma metastasis suppressor) were increased in the secreted proteome of the MRJ(L)-expressing cells. We confirmed by quantitative RT-PCR analysis that the secreted profile reflected altered transcription of the respective genes.ConclusionCollectively, our data indicate an important role for a totally uncharacterized isoform of DNAJB6 in breast cancer. We show that MRJ(L) is a nuclear protein that is lost in breast cancer, that regulates several key players in tumor formation and metastasis, and that is functionally able to retard tumor growth.

Collaboration


Dive into the Judy A. King's collaboration.

Top Co-Authors

Avatar

Troy Stevens

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Diego F. Alvarez

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Mary I. Townsley

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Hairu Chen

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lalita A. Shevde

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Songwei Wu

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

James C. Parker

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy M. Moore

University of South Alabama

View shared research outputs
Researchain Logo
Decentralizing Knowledge