Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary I. Townsley is active.

Publication


Featured researches published by Mary I. Townsley.


Circulation Research | 1985

The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability.

R J Korthuis; D N Granger; Mary I. Townsley; A E Taylor

Previous studies indicate that vascular permeability is increased in skeletal muscle subjected to 4 hours of inflow occlusion. However, the mechanism(s) underlying the increase in permeability are unknown. The aim of this study was to assess the role of oxygen-derived free radicals and histamine as putative mediators of the increased permeability in skeletal muscle subjected to 4 hours of inflow occlusion. The osmotic reflection coefficient for total plasma proteins and isogravimetric capillary pressure were estimated in canine gracilis muscle for the following conditions: control, ischemia, and ischemia plus pretreatment with allopurinol (a xanthine oxidase inhibitor), catalase (a peroxidase that reduces hydrogen peroxide to water and molecular oxygen), superoxide dismutase (a superoxide anion scavenger), dimethyl sulfoxide (a hydroxyl radical scavenger), diphenhydramine (a histamine H1-receptor blocker), or cimetidine (a histamine H2-receptor blocker). Ischemia, followed by reperfusion, significantly reduced the reflection coefficient from 0.94 +/- 0.02 to 0.64 +/- 0.02 and isogravimetric capillary pressure from 13.8 +/- 1.0 mm Hg to 6.9 +/- 0.4 mmHg, indicating a dramatic increase in microvascular permeability. Prior treatment with diphenhydramine or cimetidine did not significantly alter the permeability increase induced by ischemia. However, pretreatment with allopurinol, catalase, superoxide dismutase, or dimethylsulfoxide did significantly attenuate the increase in vascular permeability. The results of this study indicate that oxygen radicals are primarily responsible for the increased vascular permeability produced by ischemia-reperfusion, that the hydroxyl radical may represent the primary damaging radical, and that xanthine oxidase may represent the primary source of oxygen-derived free radicals in ischemic skeletal muscle.


Circulation Research | 2006

Transient Receptor Potential Vanilloid 4-Mediated Disruption of the Alveolar Septal Barrier. A Novel Mechanism of Acute Lung Injury

Diego F. Alvarez; Judy A. King; David S. Weber; Emile Addison; Wolfgang Liedtke; Mary I. Townsley

Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4α-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4α-phorbol-12,13-didecanoate was absent in TRPV4−/− mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.


Science Translational Medicine | 2012

An Orally Active TRPV4 Channel Blocker Prevents and Resolves Pulmonary Edema Induced by Heart Failure

Kevin S. Thorneloe; Mui Cheung; Weike Bao; Hasan Alsaid; Stephen C. Lenhard; Ming-Yuan Jian; Melissa H. Costell; Kristeen Maniscalco-Hauk; John A. Krawiec; Alan R. Olzinski; Earl Gordon; Irina M. Lozinskaya; Lou Elefante; Pu Qin; Daniel S. Matasic; Chris James; James Tunstead; Brian T. Donovan; Lorena A. Kallal; Anna Waszkiewicz; Kalindi Vaidya; Elizabeth A. Davenport; J. Larkin; Mark Burgert; Linda N. Casillas; Robert W. Marquis; Guosen Ye; Hilary Schenck Eidam; Krista B. Goodman; John R. Toomey

Transient receptor potential vanilloid 4 (TRPV4) channels are expressed in human heart failure lungs, which can be blocked to prevent and resolve heart failure–induced pulmonary edema. Ion Channel Blockade Prevents Pulmonary Edema Heart failure affects not only the heart and vessels but also the lungs. As blood pressure builds up in the lung’s vessels, fluid leaks into the lungs. Treatment options are limited for these patients, mostly because the mechanism underlying pulmonary edema is unclear. Here, Thorneloe and colleagues implicate the activation of the transient receptor potential vanilloid 4 (TRPV4) ion channel in the onset of edema during heart failure and show that a small-molecule drug can prevent such leakage. Activation of the ion channel TRPV4 results in pulmonary edema in animal lungs. The authors first confirmed that TRPV4 was expressed in normal human lungs and then demonstrated that it was increased in lung tissue from patients with a history of congestive heart failure. Using a small-molecule screen, Thorneloe et al. discovered GSK2193874. In human cells in vitro and mouse lungs ex vivo, the small molecule effectively blocked TRPV4 channels to maintain endothelial (vessel) layer integrity. A related study by Huh et al. (this issue) shows that the drug indeed prevents vascular leakage of human cell cultures in vitro. The GSK2193874 analog GSK2263095 displayed similar activity in canine lungs ex vivo. In vivo in rat models of heart failure, the authors found that the drug was effective in both preventing and reversing pulmonary edema. The molecule only protected against lung permeability at high (pathological) pulmonary venous pressure. Thorneloe and colleagues showed that GSK2193874 blocked TRPV4 activity across species, including in human cells, without adversely affecting heart rate or arterial pressure. This suggests that TRPV4 blockers might be used therapeutically to treat patients with heart failure–induced pulmonary edema. Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca2+ influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

TRPV4 channels augment macrophage activation and ventilator-induced lung injury

Kazutoshi Hamanaka; Ming-Yuan Jian; Mary I. Townsley; Judy A. King; Wolfgang Liedtke; David S. Weber; Fabien G. Eyal; Mary M. Clapp; James C. Parker

We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration coefficients (K(f)) measured in isolated perfused lungs after ventilation with successive 30-min periods of 9, 25, and 35 cmH(2)O PIP did not significantly increase in lungs from TRPV4(-/-) mice but increased >2.2-fold in TRPV4(+/+) lungs, TRPV4(+/+) lungs instilled with TRPV4(-/-) macrophages, and TRPV4(-/-) lungs instilled with TRPV4(+/+) macrophages after ventilation with 35 cmH(2)O PIP. Activation of TRPV4 with 4-alpha-phorbol didecanoate (4alphaPDD) significantly increased intracellular calcium, superoxide, and nitric oxide production in TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. Cross-sectional areas increased nearly 3-fold in TRPV4(+/+) macrophages compared with TRPV4(-/-) macrophages after 4alphaPDD. Immunohistochemistry staining of lung tissue for nitrotyrosine revealed increased amounts in high PIP ventilated TRPV4(+/+) lungs compared with low PIP ventilated TRPV4(+/+) or high PIP ventilated TRPV4(-/-) lungs. Thus TRPV4(+/+) macrophages restored susceptibility of TRPV4(-/-) lungs to mechanical injury. A TRPV4 agonist increased intracellular calcium and reactive oxygen and nitrogen species in harvested TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. K(f) increases correlated with tissue nitrotyrosine, a marker of peroxynitrite production.


Circulation Research | 2006

Transient Receptor Potential Vanilloid 4–Mediated Disruption of the Alveolar Septal Barrier

Diego F. Alvarez; Judy A. King; David S. Weber; Emile Addison; Wolfgang Liedtke; Mary I. Townsley

Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier. Expression of TRPV4 was confirmed via immunohistochemistry in the alveolar septal wall in human, rat, and mouse lung. In isolated rat lung, the TRPV4 activators 4α-phorbol-12,13-didecanoate and 5,6- or 14,15-epoxyeicosatrienoic acid, as well as thapsigargin, a known activator of calcium entry via store-operated channels, all increased lung endothelial permeability as assessed by measurement of the filtration coefficient, in a dose- and calcium-entry dependent manner. The TRPV antagonist ruthenium red blocked the permeability response to the TRPV4 agonists, but not to thapsigargin. Light and electron microscopy of rat and mouse lung revealed that TRPV4 agonists preferentially produced blebs or breaks in the endothelial and epithelial layers of the alveolar septal wall, whereas thapsigargin disrupted interendothelial junctions in extraalveolar vessels. The permeability response to 4α-phorbol-12,13-didecanoate was absent in TRPV4−/− mice, whereas the response to thapsigargin remained unchanged. Collectively, these findings implicate TRPV4 in disruption of the alveolar septal barrier and suggest its participation in the pathogenesis of acute lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Ca2+ entry via α1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium

Songwei Wu; Ming-Yuan Jian; Yan-Chun Xu; Chun Zhou; Abu-Bakr Al-Mehdi; Wolfgang Liedtke; Hee-Sup Shin; Mary I. Townsley

Pulmonary vascular endothelial cells express a variety of ion channels that mediate Ca(2+) influx in response to diverse environmental stimuli. However, it is not clear whether Ca(2+) influx from discrete ion channels is functionally coupled to specific outcomes. Thus we conducted a systematic study in mouse lung to address whether the alpha(1G) T-type Ca(2+) channel and the transient receptor potential channel TRPV4 have discrete functional roles in pulmonary capillary endothelium. We used real-time fluorescence imaging for endothelial cytosolic Ca(2+), immunohistochemistry to probe for surface expression of P-selectin, and the filtration coefficient to specifically measure lung endothelial permeability. We demonstrate that membrane depolarization via exposure of pulmonary vascular endothelium to a high-K(+) perfusate induces Ca(2+) entry into alveolar septal endothelial cells and exclusively leads to the surface expression of P-selectin. In contrast, Ca(2+) entry in septal endothelium evoked by the selective TRPV4 activator 4alpha-phorbol-12,13-didecanoate (4alpha-PDD) specifically increases lung endothelial permeability without effect on P-selectin expression. Pharmacological blockade or knockout of alpha(1G) abolishes depolarization-induced Ca(2+) entry and surface expression of P-selectin but does not prevent 4alpha-PDD-activated Ca(2+) entry and the resultant increase in permeability. Conversely, blockade or knockout of TRPV4 specifically abolishes 4alpha-PDD-activated Ca(2+) entry and the increase in permeability, while not impacting depolarization-induced Ca(2+) entry and surface expression of P-selectin. We conclude that in alveolar septal capillaries Ca(2+) entry through alpha(1G) and TRPV4 channels differentially and specifically regulates the transition of endothelial procoagulant phenotype and barrier integrity, respectively.


Circulation Research | 2005

Essential Role of a Ca2+-Selective, Store-Operated Current (ISOC) in Endothelial Cell Permeability. Determinants of the Vascular Leak Site

Songwei Wu; Eugene A. Cioffi; Diego F. Alvarez; Sarah Sayner; Hairu Chen; Donna L. Cioffi; Judy A. King; Judy Creighton; Mary I. Townsley; Steven R. Goodman; Troy Stevens

Store-operated calcium (SOC) entry is sufficient to disrupt the extra-alveolar, but not the alveolar, endothelial cell barrier. Mechanism(s) underlying such insensitivity to transitions in cytosolic calcium ([Ca2+]i) in microvascular endothelial cells are unknown. Depletion of stored Ca2+ activates a larger SOC entry response in extra-alveolar (pulmonary artery; PAECs) than alveolar (pulmonary microvascular; PMVECs) endothelial cells. In vivo permeation studies revealed that Ca2+ store depletion activates similar nonselective cationic conductances in PAECs and PMVECs, while only PAECs possess the calcium-selective, store-operated Ca2+ entry current, ISOC. Pretreatment with the type 4 phosphodiesterase inhibitor, rolipram, abolished thapsigargin-activated ISOC in PAECs, and revealed ISOC in PMVECs. Rolipram pretreatment shifted the thapsigargin-induced fluid leak site from extra-alveolar to alveolar vessels in the intact pulmonary circulation. Thus, our results indicate ISOC provides a [Ca2+]i source that is needed to disrupt the endothelial cell barrier, and demonstrate that intracellular events controlling ISOC activation coordinate the site-specific vascular response to inflammation.


Microcirculation | 2006

Ca2+ Channels and Pulmonary Endothelial Permeability: Insights from Study of Intact Lung and Chronic Pulmonary Hypertension

Mary I. Townsley; Judy A. King; Diego F. Alvarez

Phenotypic heterogeneity in pulmonary vascular endothelial cells extends to regulation of endothelial permeability, a process which often depends upon Ca2 + entry from the extracellular space. Scanning electron microscopy of vascular corrosion casts has documented distinct patterns of barrier disruption. Store depletion and activation of Ca2 + entry via canonical transient potential channels (TRPC1 and TRPC4) disrupts the barrier in extraalveolar vessels. In contrast, numerous other models of acute lung injury, including high vascular pressure‐ or epoxyeicosatrienoic acid‐induced injury, specifically disrupt the alveolar septal barrier. This review discusses Ca2 + permeant channels which potentially could be involved in regulation of barrier integrity in the alveolar septal compartment: transient receptor potential channels, cyclic nucleotide gated channels, purinergic (P2X) channels, and T‐type voltage gated channels. The evidence for the vanilloid transient receptor potential channel TRPV4 in regulating septal barrier function is discussed. Adaptations in barrier function in chronic pulmonary hypertension are reviewed, notably the loss of a store depletion‐dependent permeability response in the intact lung. Finally, the authors propose that since specific disruption of the alveolar septal barrier will have deleterious functional consequences, such as alveolar flooding and impairment of gas exchange, identification of specific molecular targets for Ca2 + entry‐dependent regulation of barrier function in this compartment is needed.


The Journal of Physiology | 2003

Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated perfused pig lung

Laura Trout; Mary I. Townsley; Amy L. Bowden; Stephen T. Ballard

Since anion secretion inhibitors reproduce important aspects of cystic fibrosis (CF) lung disease, the effects of these antagonists on airway mucus morphology were assessed in isolated perfused pig lungs. Maximal inhibitory concentrations of bumetanide and dimethylamiloride, which respectively block Cl− and HCO3− secretion in porcine airways, induced the formation of dense ‘plastered’ mucus on the airway surface, depletion of periciliary fluid and collapse of cilia. This effect was more pronounced when lungs were also exposed to bethanechol to stimulate submucosal gland secretion, when plastered mucus covered > 98% of the airway surface. Bethanechol also reduced gland duct mucin content in the absence, but not presence, of the anion secretion inhibitors. Anion secretion inhibitors did not induce measurable increases in goblet cell degranulation. We conclude that inhibition of anion and liquid secretion in porcine lungs disrupts the normal morphology of airway surface mucus, providing further evidence that impaired anion secretion alone could account for critical aspects of CF lung disease.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Role of MMP2 and MMP9 in TRPV4-induced lung injury

Patricia Villalta; Petra Rocic; Mary I. Townsley

Ca(2+) entry through transient receptor potential vanilloid 4 (TRPV4) results in swelling, blebbing, and detachment of the epithelium and capillary endothelium in the intact lung. Subsequently, increased permeability of the septal barrier and alveolar flooding ensue. In this study, we tested the hypothesis that TRPV4 activation provides a Ca(2+) source necessary for proteolytic disruption of cell-cell or cell-matrix adhesion by matrix metalloproteinases (MMPs) 2 and 9, thus increasing septal barrier permeability. In our study, C57BL/6 or TRPV4(-/-) mouse lungs were perfused with varying doses of the TRPV4 agonist GSK-1016790A (Sigma) and then prepared for Western blot. Lung injury, assessed by increases in lung wet-to-dry weight ratios and total protein levels in the bronchoalveolar lavage fluid, was increased in a dose-dependent fashion in TRPV4(+/+) but not TRPV4(-/-) lungs. In concert with lung injury, we detected increased active MMP2 and MMP9 isoforms, suggesting that TRPV4 can provide the Ca(2+) source necessary for increased MMP2/9 activation. Furthermore, tissue inhibitor of metalloproteinases (TIMP) 2 levels in the TRPV4-injured lungs were decreased, suggesting that TRPV4 activation increases the availability of these active MMPs. We then determined whether MMP2 and MMP9 mediate TRPV4-induced lung injury. Pharmacological blockade (SB-3CT, 1 μM; Sigma) of MMP2 and MMP9 resulted in protection against TRPV4-induced lung injury. We conclude that TRPV4 activation and the subsequent Ca(2+) transient initiates a rapid cascade of events leading to release and activation of the gelatinase MMPs, which then contribute to lung injury.

Collaboration


Dive into the Mary I. Townsley's collaboration.

Top Co-Authors

Avatar

A. E. Taylor

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

James C. Parker

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Judy A. King

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego F. Alvarez

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Ming-Yuan Jian

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Songwei Wu

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Troy Stevens

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge