Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy D. Wall is active.

Publication


Featured researches published by Judy D. Wall.


Science | 2013

The Genetic Basis for Bacterial Mercury Methylation

Jerry M. Parks; Alexander Johs; Mircea Podar; Romain Bridou; Richard A. Hurt; Steven D. Smith; Stephen J. Tomanicek; Yun Qian; Steven D. Brown; Craig C. Brandt; Anthony V. Palumbo; Jeremy C. Smith; Judy D. Wall; Dwayne A. Elias; Liyuan Liang

Mercury Methylating Microbes Mercury (Hg) most commonly becomes bioavailable and enters the food web as the organic form methylmercury, where it induces acute toxicity effects that can be magnified up the food chain. But most natural and anthropogenic Hg exists as inorganic Hg2+ and is only transformed into methylmercury by anaerobic microorganisms—typically sulfur-reducing bacteria. Using comparative genomics, Parks et al. (p. 1332, published online 7 February; see the Perspective by Poulain and Barkay) identified two genes that encode a corrinoid and iron-sulfur proteins in six known Hg-methylating bacteria but were absent in nonmethylating bacteria. In two distantly related model Hg-methylating bacteria, deletion of either gene—or both genes simultaneously—reduced the ability for the bacteria to produce methylmercury but did not impair cellular growth. The presence of this two-gene cluster in several other bacterial and lineages for which genome sequences are available suggests the ability to produce methylmercury may be more broadly distributed in the microbial world than previously recognized. A two-gene cluster encodes proteins required for the production of the neurotoxin methylmercury in bacteria. [Also see Perspective by Poulain and Barkay] Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.


Journal of Bacteriology | 2006

Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach

Aindrila Mukhopadhyay; Zhili He; Eric J. Alm; Adam P. Arkin; Edward E. K. Baidoo; Sharon C. Borglin; Wenqiong Chen; Terry C. Hazen; Qiang He; Hoi-Ying N. Holman; Katherine H. Huang; Rick Huang; Dominique Joyner; Natalie Katz; Martin Keller; Paul Oeller; Alyssa M. Redding; Jun Sun; Judy D. Wall; Jing Wei; Zamin Yang; Huei-Che Yen; Jizhong Zhou; Jay D. Keasling

The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.


Applied and Environmental Microbiology | 2011

Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation

Cynthia C. Gilmour; Dwayne A. Elias; Amy M. Kucken; Steven D. Brown; Anthony V. Palumbo; Christopher W. Schadt; Judy D. Wall

ABSTRACT We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.


Applied and Environmental Microbiology | 2002

Uranium Reduction by Desulfovibrio desulfuricans Strain G20 and a Cytochrome c3 Mutant

Rayford B. Payne; Darren M. Gentry; Barbara J. Rapp-Giles; Laurence Casalot; Judy D. Wall

ABSTRACT Previous in vitro experiments with Desulfovibrio vulgaris strain Hildenborough demonstrated that extracts containing hydrogenase and cytochrome c3 could reduce uranium(VI) to uranium(IV) with hydrogen as the electron donor. To test the involvement of these proteins in vivo, a cytochrome c3 mutant of D. desulfuricans strain G20 was assayed and found to be able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. Cytochrome c3 appears to be a part of the in vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein.


Journal of Bacteriology | 2006

Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough

S. R. Chhabra; Qiang He; Katherine H. Huang; S. P. Gaucher; Eric Alm; Zhili He; M. Z. Hadi; Terry C. Hazen; Judy D. Wall; Jizhong Zhou; Adam P. Arkin; Anup K. Singh

Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organisms response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z >/= 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 degrees C from a growth temperature of 37 degrees C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors sigma(32) and sigma(54). While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters.


Journal of Bacteriology | 2009

The electron transfer system of syntrophically grown Desulfovibrio vulgaris.

Christopher B. Walker; Zhili He; Zamin K. Yang; Joseph A. Ringbauer; Qiang He; Jizhong Zhou; Gerrit Voordouw; Judy D. Wall; Adam P. Arkin; Terry C. Hazen; Sergey Stolyar; David A. Stahl

Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.


Nature Reviews Microbiology | 2011

How sulphate-reducing microorganisms cope with stress: lessons from systems biology

Jizhong Zhou; Qiang He; Christopher L. Hemme; Aindrila Mukhopadhyay; Kristina L. Hillesland; Aifen Zhou; Zhili He; Joy D. Van Nostrand; Terry C. Hazen; David A. Stahl; Judy D. Wall; Adam P. Arkin

Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.


Journal of Bacteriology | 2007

Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough

Aindrila Mukhopadhyay; Alyssa M. Redding; Marcin P. Joachimiak; Adam P. Arkin; Sharon E. Borglin; Paramvir Dehal; Romy Chakraborty; Jil T. Geller; Terry C. Hazen; Qiang He; Dominique Joyner; Vincent J.J. Martin; Judy D. Wall; Zamin Koo Yang; Jizhong Zhou; Jay D. Keasling

The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O(2)) were monitored via transcriptomics and proteomics. Exposure to 0.1% O(2) caused a decrease in the growth rate without affecting viability. Concerted upregulation of the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O(2) exposure. Several of the candidates also showed increases in protein abundance. Among the remaining small number of transcript changes was the upregulation of the predicted transmembrane tetraheme cytochrome c(3) complex. Other known oxidative stress response candidates remained unchanged during the low-O(2) exposure. To fully understand the results of the 0.1% O(2) exposure, transcriptomics and proteomics data were collected for exposure to air using a similar experimental protocol. In contrast to the 0.1% O(2) exposure, air exposure was detrimental to both the growth rate and viability and caused dramatic changes at both the transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon genes were downregulated during air exposure. Our results highlight the differences in the cell-wide responses to low and high O(2) levels in D. vulgaris and suggest that while exposure to air is highly detrimental to D. vulgaris, this bacterium can successfully cope with periodic exposure to low O(2) levels in its environment.


Geology | 2002

Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico

Chuanlun L. Zhang; Yiliang Li; Judy D. Wall; Lise Larsen; Roger Sassen; Yongsong Huang; Yi Wang; Aaron D. Peacock; David C. White; Juske Horita; David R. Cole

An integrated lipid biomarker–carbon isotope approach reveals new insight to microbial methane oxidation in the Gulf of Mexico gas-hydrate system. Hydrate-bearing and hydrate-free sediments were collected from the Gulf of Mexico slope using a research submersible. Phospholipid fatty acids consist mainly of C16–C18 compounds, which are largely derived from bacteria. The phospholipid fatty acids suggest that total biomass is enhanced 11–30-fold in gas-hydrate–bearing sediment compared to hydrate-free sediment. Lipid biomarkers indicative of sulfate-reducing bacteria are strongly depleted in 13C (δ13C = −48‰ to −70‰) in the hydrate-bearing samples, suggesting that they are involved in the oxidation of methane (δ13C = −47‰ for thermogenic methane and −70‰ for biogenic methane). Isotopic properties of other biomarkers suggest that sulfur-oxidizing bacteria ( Beggiatoa ) may also contribute to the lipid pool in hydrate-bearing samples, which are characterized by less negative δ13C values (to −11.2‰). In the hydrate-free sample, fatty acid biomarkers have δ13C values of −27.6‰ to −39.6‰, indicating that crude oil (average ∼−27‰) or terrestrial organic carbon (average ∼−20‰) are the likely carbon sources. Our results provide the first lipid biomarker–stable isotope evidence that sulfate- reducing bacteria play an important role in anaerobic methane oxidation in the Gulf of Mexico gas hydrates. The coupled activities of methane-oxidizing and sulfate-reducing organisms contribute to the development of ecosystems in deep-sea environments and result in sequestration of carbon as buried organic carbon and authigenic carbonates. These have implications for studying climate change based on carbon budgets.


Applied and Environmental Microbiology | 2006

Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.

Qiang He; Katherine H. Huang; Zhili He; Eric J. Alm; Matthew W. Fields; Terry C. Hazen; Adam P. Arkin; Judy D. Wall; Jizhong Zhou

ABSTRACT Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

Collaboration


Dive into the Judy D. Wall's collaboration.

Top Co-Authors

Avatar

Adam P. Arkin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhili He

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Dwayne A. Elias

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang He

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

David A. Stahl

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Aindrila Mukhopadhyay

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge