Judy J. Watson
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judy J. Watson.
Pharmacology & Therapeutics | 2013
Shelley J Allen; Judy J. Watson; Deborah K. Shoemark; Neil U. Barua; Nikunj K. Patel
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinsons, Alzheimers and Huntingtons diseases. GDNF administration has recently been shown to be an effective treatment for Parkinsons disease, with clinical trials currently in progress. Trials with NGF for Alzheimers disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
BioDrugs | 2008
Judy J. Watson; Shelley J Allen; DrDavid Dawbarn
Chronic pain presents a huge economic and social burden, with existing treatments largely unable to satisfy medical needs. Recently, studies have shown that nerve growth factor (NGF) is a major mediator of inflammatory and neuropathic pain, providing a new therapeutic target. Although originally discovered as a trophic factor for sympathetic and sensory neurons during development, it now appears that in adults, levels of NGF are elevated in many acute and chronic pain conditions. Furthermore, preclinical animal models of inflammatory and neuropathic pain also show increased NGF levels, while the sequestration of NGF alleviates the associated hyperalgesia. The molecular mechanisms involved are being elucidated.This review briefly examines pain signaling pathways and describes currently available analgesics. It then investigates the approaches taken in targeting NGF-mediated pain. Current options being explored include the development of humanized monoclonal antibodies to NGF or its tyrosine kinase receptor TrkA (also known as neurotrophic tyrosine kinase receptor, type 1 [NTRK1]), and the sequestration of NGF using TrkA domain 5 (TrkAd5), a soluble receptor protein that binds NGF with picomolar affinity. Administration of either antibodies or TrkAd5 has been shown to be effective in a number of preclinical models of pain, including cystitis, osteoarthritis, UV irradiation (sunburn), and skeletal bone pain due to fracture or cancer. Other possible future therapies examined in this review include small-molecule TrkA antagonists, which target either the extracellular NGF binding domain of TrkA or its intracellular tyrosine kinase domain.
Current Neuropharmacology | 2011
Shelley J Allen; Judy J. Watson; David Dawbarn
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer’s disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer’s disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer’s disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Journal of Neurochemistry | 2008
Oliver Clewes; Mark S. Fahey; Sue J. Tyler; Judy J. Watson; Heon Seok; Caterina Catania; Kwangwook Cho; David Dawbarn; Shelley J Allen
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75NTR and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer’s disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild‐type and cleavage‐resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M‐proNGF and NGF bound to p75NTR with similar affinities, whilst M‐proNGF had a lower affinity than NGF for TrkA. M‐proNGF behaved neurotrophically, albeit less effectively than NGF. M‐proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M‐proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M‐proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M‐proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75NTR : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.
Journal of Pharmacology and Experimental Therapeutics | 2005
Judy J. Watson; Mark S. Fahey; Edwin van den Worm; Ferdi Engels; Frans P. Nijkamp; Paul Stroemer; Steve McMahon; Shelley J Allen; David Dawbarn
Elevated levels of nerve growth factor have been linked to the onset and persistence of many pain-related disorders and asthma. Described here are the design, expression, refolding, and purification of a monomeric (nonstrand-swapped) form of the binding domain of the nerve growth factor receptor, designated TrkAd5. We have shown that TrkAd5 produced recombinantly binds nerve growth factor with picomolar affinity. TrkAd5 has been characterized using a variety of biophysical and biochemical assays and is shown here to be stable in both plasma and urine. The palliative effects of TrkAd5 are demonstrated in animal models of inflammatory pain and allergic asthma. We conclude that TrkAd5 will prove effective in ameliorating both acute and chronic conditions where nerve growth factor acts as a mediator and suggest a role for its application in vivo as a novel therapeutic.
Journal of Molecular and Cellular Cardiology | 2015
Simon M. Bryant; Cherrie H.T. Kong; Judy J. Watson; Mark B. Cannell; Andrew F. James; Clive H. Orchard
In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure.
Journal of Molecular and Cellular Cardiology | 2014
Simon M Bryant; Tomomi E. Kimura; Cherrie H.T. Kong; Judy J. Watson; Anabelle Chase; M.Saadeh Suleiman; Andrew F. James; Clive H. Orchard
L-type Ca channels (LTCC), which play a key role in cardiac excitation–contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation.
Biochemical Society Transactions | 2006
David Dawbarn; Mark S. Fahey; Judy J. Watson; Sue J. Tyler; Deborah K. Shoemark; Richard B. Sessions; R. Zhang; L. Brady; Christine L. Willis; Sarah Allen
Biochemical studies have shown that domain 5 of the TrkA (tropomyosin receptor kinase A) receptor is involved in the binding of NGF (nerve growth factor). Crystallographic studies have confirmed this, demonstrating that one homodimer of NGF binds to two TrkAd5 molecules. TrkAd5 has been made recombinantly in Escherichia coli, purified and shown to bind NGF with picomolar affinity. We have used the co-ordinates of the crystal structure of the NGF-TrkAd5 complex to screen approximately two million compounds in silico for the identification of small molecule agonists/antagonists. Selected hits were shown to be active in an in vitro ligand-binding assay; structure-activity relationships are now being investigated. In addition, TrkAd5 has been shown to be efficacious in preclinical models of inflammatory pain and asthma by the sequestration of excess levels of endogenous NGF, and therefore represents a novel therapeutic agent.
PLOS ONE | 2015
Haifei Zhang; Mark B. Cannell; Shang Jin Kim; Judy J. Watson; Ruth Norman; Sarah Calaghan; Clive H. Orchard; Andrew F. James
Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Richard C. Bond; Simon M. Bryant; Judy J. Watson; Jules C. Hancox; Clive H. Orchard; Andrew F. James
Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 μmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.