Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon M. Bryant is active.

Publication


Featured researches published by Simon M. Bryant.


Journal of Molecular and Cellular Cardiology | 2015

Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts

Simon M. Bryant; Cherrie H.T. Kong; Judy J. Watson; Mark B. Cannell; Andrew F. James; Clive H. Orchard

In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure.


The Journal of Physiology | 2013

Do t‐tubules play a role in arrhythmogenesis in cardiac ventricular myocytes?

Clive H. Orchard; Simon M. Bryant; Andrew F. James

Abstractu2002 The transverse (t‐) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation–contraction coupling is located predominantly at the t‐tubules, which thus form a Ca2+‐handling micro‐environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation–contraction coupling, the role of the t‐tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co‐location of proteins at the t‐tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t‐tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart.


Cardiovascular Research | 2014

Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes

Richard C. Bond; Stéphanie C.M. Choisy; Simon M. Bryant; Jules C. Hancox; Andrew F. James

Aims Noradrenaline plays an important role in the modulation of atrial electrophysiology. However, the identity of the modulated channels, their mechanisms of modulation, and their role in the action potential remain unclear. This study aimed to investigate the noradrenergic modulation of an atrial steady-state outward current (IKss). Methods and results Rat atrial myocyte whole-cell currents were recorded at 36°C. Noradrenaline potently inhibited IKss (IC50 = 0.90 nM, 42.1 ± 4.3% at 1 µM, n = 7) and potentiated the L-type Ca2+ current (ICaL, EC50 = 136 nM, 205 ± 40% at 1 µM, n = 6). Noradrenaline-sensitive IKss was weakly voltage-dependent, time-independent, and potentiated by the arachidonic acid analogue, 5,8,11,14-eicosatetraynoic acid (EYTA; 10 µM), or by osmotically induced membrane stretch. Noise analysis revealed a unitary conductance of 8.4 ± 0.42 pS (n = 8). The biophysical/pharmacological properties of IKss indicate a TREK-like K+ channel. The effect of noradrenaline on IKss was abolished by combined β1-/β2-adrenoceptor antagonism (1 µM propranolol or 10 µM β1-selective atenolol and 100 nM β2-selective ICI-118,551 in combination), but not by β1- or β2-antagonist alone. The action of noradrenaline could be mimicked by β2-agonists (zinterol and fenoterol) in the presence of β1-antagonist. The action of noradrenaline on IKss, but not on ICaL, was abolished by pertussis toxin (PTX) treatment. The action of noradrenaline on ICaL was mediated by β1-adrenoceptors via a PTX-insensitive pathway. Noradrenaline prolonged APD30 by 52 ± 19% (n = 5; P < 0.05), and this effect was abolished by combined β1-/β2-antagonism, but not by atenolol alone. Conclusion Noradrenaline inhibits a rat atrial TREK-like K+ channel current via a PTX-sensitive mechanism involving co-operativity of β1-/β2-adrenoceptors that contributes to atrial APD prolongation.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Reduced density and altered regulation of rat atrial L-type Ca2+ current in heart failure

Richard C. Bond; Simon M. Bryant; Judy J. Watson; Jules C. Hancox; Clive H. Orchard; Andrew F. James

Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 μmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2018

The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes

Cherrie H.T. Kong; Simon M. Bryant; Judy J. Watson; Hanne C. Gadeberg; David Roth; Hemal H. Patel; Mark B. Cannell; Clive H. Orchard; Andrew F. James

Abstract Aging is associated with diminished cardiac function in males. Cardiac excitation-contraction coupling in ventricular myocytes involves Ca influx via the Ca current (ICa) and Ca release from the sarcoplasmic reticulum, which occur predominantly at t-tubules. Caveolin-3 regulates t-tubular ICa, partly through protein kinase A (PKA), and both ICa and caveolin-3 decrease with age. We therefore investigated ICa and t-tubule structure and function in cardiomyocytes from male wild-type (WT) and caveolin-3-overexpressing (Cav-3OE) mice at 3 and 24 months of age. In WT cardiomyocytes, t-tubular ICa-density was reduced by ~50% with age while surface ICa density was unchanged. Although regulation by PKA was unaffected by age, inhibition of caveolin-3-binding reduced t-tubular ICa at 3 months, but not at 24 months. While Cav-3OE increased cardiac caveolin-3 protein expression ~2.5-fold at both ages, the age-dependent reduction in caveolin-3 (WT ~35%) was preserved in transgenic mice. Overexpression of caveolin-3 reduced t-tubular ICa density at 3 months but prevented further ICa loss with age. Measurement of Ca release at the t-tubules revealed that the triggering of local Ca release by t-tubular ICa was unaffected by age. In conclusion, the data suggest that the reduction in ICa density with age is associated with the loss of a caveolin-3-dependent mechanism that augments t-tubular ICa density.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Loss of caveolin-3-dependent regulation of ICa in rat ventricular myocytes in heart failure

Simon M. Bryant; Cherrie H.T. Kong; Mark B. Cannell; Clive H. Orchard; Andrew F. James

β2-Adrenoceptors and L-type Ca2+ current (ICa) redistribute from the t-tubules to the surface membrane of ventricular myocytes from failing hearts. The present study investigated the role of changes in caveolin-3 and PKA signaling, both of which have previously been implicated in this redistribution. ICa was recorded using the whole cell patch-clamp technique from ventricular myocytes isolated from the hearts of rats that had undergone either coronary artery ligation (CAL) or equivalent sham operation 18 wk earlier. ICa distribution between the surface and t-tubule membranes was determined using formamide-induced detubulation (DT). In sham myocytes, β2-adrenoceptor stimulation increased ICa in intact but not DT myocytes; however, forskolin (to increase cAMP directly) and H-89 (to inhibit PKA) increased and decreased, respectively, ICa at both the surface and t-tubule membranes. C3SD peptide (which decreases binding to caveolin-3) inhibited ICa in intact but not DT myocytes but had no effect in the presence of H-89. In contrast, in CAL myocytes, β2-adrenoceptor stimulation increased ICa in both intact and DT myocytes, but C3SD had no effect on ICa; forskolin and H-89 had similar effects as in sham myocytes. These data show the redistribution of β2-adrenoceptor activity and ICa in CAL myocytes and suggest constitutive stimulation of ICa by PKA in sham myocytes via concurrent caveolin-3-dependent (at the t-tubules) and caveolin-3-independent mechanisms, with the former being lost in CAL myocytes. NEW & NOTEWORTHY In ventricular myocytes from normal hearts, regulation of the L-type Ca2+ current by β2-adrenoceptors and the constitutive regulation by caveolin-3 is localized to the t-tubules. In heart failure, the regulation of L-type Ca2+ current by β2-adrenoceptors is redistributed to the surface membrane, and the constitutive regulation by caveolin-3 is lost.


Experimental Physiology | 2018

Caveolin 3‐dependent loss of t‐tubular ICa during hypertrophy and heart failure in mice

Simon M. Bryant; Cherrie H.T. Kong; Judy J. Watson; Hanne C. Gadeberg; Andrew F. James; Mark B. Cannell; Clive H. Orchard

What is the central question of this study? Heart failure is associated with redistribution of L‐type Ca2+ current (ICa) away from the t‐tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t‐tubular ICa and loss of regulation of ICa by caveolin 3. Thus, the pathological loss of t‐tubular ICa, which contributes to impaired excitation–contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3‐dependent stimulation of t‐tubular ICa.


Physiological Reports | 2017

Cholesterol depletion does not alter the capacitance or Ca handling of the surface or t-tubule membranes in mouse ventricular myocytes

Hanne C. Gadeberg; Cherrie H.T. Kong; Simon M. Bryant; Andrew F. James; Clive H. Orchard

Cholesterol is a key component of the cell plasma membrane. It has been suggested that the t‐tubule membrane of cardiac ventricular myocytes is enriched in cholesterol and that this plays a role in determining t‐tubule structure and function. We have used methyl‐β‐cyclodextrin (MβCD) to deplete cholesterol in intact and detubulated mouse ventricular myocytes to investigate the contribution of cholesterol to t‐tubule structure, membrane capacitance, and the distribution of Ca flux pathways. Depletion of membrane cholesterol was confirmed using filipin; however, di‐8‐ANEPPS staining showed no differences in t‐tubule structure following MβCD treatment. MβCD treatment had no significant effect on the capacitance:volume relationship of intact myocytes or on the decrease in capacitance:volume caused by detubulation. Similarly, Ca influx and efflux were not altered by MβCD treatment and were reduced by a similar amount following detubulation in untreated and MβCD‐treated cells. These data show that cholesterol depletion has similar effects on the surface and t‐tubule membranes and suggest that cholesterol plays no acute role in determining t‐tubule structure and function.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Caveolin-3 KO Disrupts T-Tububle Structure and Decreases T-Tubular ICa Density in Mouse Ventricular Myocytes

Simon M. Bryant; Cherrie H.T. Kong; Judy J. Watson; Hanne C. Gadeberg; David Roth; Hemal H. Patel; Mark B. Cannell; Andrew F. James; Clive H. Orchard

Caveolin-3 (Cav-3) is a protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. In cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted, and excitation-contraction coupling is impaired. However, the extent to which the decrease in Cav-3 expression underlies these changes is unclear. We therefore investigated the structure and function of myocytes isolated from the hearts of Cav-3 knockout (KO) mice. These mice showed cardiac dilatation and decreased ejection fraction in vivo compared with wild-type control mice. Isolated KO myocytes showed cellular hypertrophy, altered t-tubule structure, and decreased L-type Ca2+ channel current (ICa) density. This decrease in density occurred predominantly in the t-tubules, with no change in total ICa, and was therefore a consequence of the increase in membrane area. Cav-3 KO had no effect on L-type Ca2+ channel expression, and C3SD peptide, which mimics the scaffolding domain of Cav-3, had no effect on ICa in KO myocytes. However, inhibition of PKA using H-89 decreased ICa at the surface and t-tubule membranes in both KO and wild-type myocytes. Cav-3 KO had no significant effect on Na+/Ca2+ exchanger current or Ca2+ release. These data suggest that Cav-3 KO causes cellular hypertrophy, thereby decreasing t-tubular ICa density. NEW & NOTEWORTHY Caveolin-3 (Cav-3) is a protein that inhibits hypertrophic pathways, has been implicated in the formation and function of cardiac t-tubules, and shows decreased expression in heart failure. This study demonstrates that Cav-3 knockout mice show cardiac dysfunction in vivo, while isolated ventricular myocytes show cellular hypertrophy, changes in t-tubule structure, and decreased t-tubular L-type Ca2+ current density, suggesting that decreased Cav-3 expression contributes to these changes in cardiac hypertrophy and failure.


Biophysical Journal | 2016

Down Regulation of L-Type Calcium Current in Rat Atrial Myocytes during Heart Failure

Andrew F. James; Richard C. Bond; Simon M. Bryant; Judy J. Watson; Jules C. Hancox; Clive H. Orchard

Collaboration


Dive into the Simon M. Bryant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge