Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy Lieberman is active.

Publication


Featured researches published by Judy Lieberman.


Cell | 2007

let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells

Fengyan Yu; Herui Yao; Pengcheng Zhu; Xiaoqin Zhang; Qiuhui Pan; Chang Gong; Yijun Huang; Xiaoqu Hu; Fengxi Su; Judy Lieberman; Erwei Song

Cancers may arise from rare self-renewing tumor-initiating cells (T-IC). However, how T-IC self renewal, multipotent differentiation, and tumorigenicity are maintained remains obscure. Because miRNAs can regulate cell-fate decisions, we compared miRNA expression in self-renewing and differentiated cells from breast cancer lines and in breast T-IC (BT-IC) and non-BT-IC from 1 degrees breast cancers. let-7 miRNAs were markedly reduced in BT-IC and increased with differentiation. Infecting BT-IC with let-7-lentivirus reduced proliferation, mammosphere formation, and the proportion of undifferentiated cells in vitro and tumor formation and metastasis in NOD/SCID mice, while antagonizing let-7 by antisense oligonucleotides enhanced in vitro self renewal of non-T-IC. Increased let-7 paralleled reduced H-RAS and HMGA2, known let-7 targets. Silencing H-RAS in a BT-IC-enriched cell line reduced self renewal but had no effect on differentiation, while silencing HMGA2 enhanced differentiation but did not affect self renewal. Therefore let-7 regulates multiple BT-IC stem cell-like properties by silencing more than one target.


Science | 2008

Identification of host proteins required for HIV infection through a functional genomic screen

Abraham L. Brass; Derek M. Dykxhoorn; Yair Benita; Nan Yan; Alan Engelman; Ramnik J. Xavier; Judy Lieberman; Stephen J. Elledge

HIV-1 exploits multiple host proteins during infection. We performed a large-scale small interfering RNA screen to identify host factors required by HIV-1 and identified more than 250 HIV-dependency factors (HDFs). These proteins participate in a broad array of cellular functions and implicate new pathways in the viral life cycle. Further analysis revealed previously unknown roles for retrograde Golgi transport proteins (Rab6 and Vps53) in viral entry, a karyopherin (TNPO3) in viral integration, and the Mediator complex (Med28) in viral transcription. Transcriptional analysis revealed that HDF genes were enriched for high expression in immune cells, suggesting that viruses evolve in host cells that optimally perform the functions required for their life cycle. This effort illustrates the power with which RNA interference and forward genetics can be used to expose the dependencies of human pathogens such as HIV, and in so doing identify potential targets for therapy.


Nature Medicine | 2003

RNA interference targeting Fas protects mice from fulminant hepatitis

Erwei Song; Sang-Kyung Lee; Jie Wang; Nedim Ince; Nengtai Ouyang; Jun Min; Jisheng Chen; Premlata Shankar; Judy Lieberman

RNA interference (RNAi) is a powerful tool to silence gene expression post-transcriptionally. However, its potential to treat or prevent disease remains unproven. Fas-mediated apoptosis is implicated in a broad spectrum of liver diseases, where inhibiting hepatocyte death is life-saving. We investigated the in vivo silencing effect of small interfering RNA (siRNA) duplexes targeting the gene Fas (also known as Tnfrsf6), encoding the Fas receptor, to protect mice from liver failure and fibrosis in two models of autoimmune hepatitis. Intravenous injection of Fas siRNA specifically reduced Fas mRNA levels and expression of Fas protein in mouse hepatocytes, and the effects persisted without diminution for 10 days. Hepatocytes isolated from mice treated with Fas siRNA were resistant to apoptosis when exposed to Fas-specific antibody or co-cultured with concanavalin A (ConA)-stimulated hepatic mononuclear cells. Treatment with Fas siRNA 2 days before ConA challenge abrogated hepatocyte necrosis and inflammatory infiltration and markedly reduced serum concentrations of transaminases. Administering Fas siRNA beginning one week after initiating weekly ConA injections protected mice from liver fibrosis. In a more fulminant hepatitis induced by injecting agonistic Fas-specific antibody, 82% of mice treated with siRNA that effectively silenced Fas survived for 10 days of observation, whereas all control mice died within 3 days. Silencing Fas expression with RNAi holds therapeutic promise to prevent liver injury by protecting hepatocytes from cytotoxicity.


Nature Reviews Drug Discovery | 2007

Interfering with disease: a progress report on siRNA-based therapeutics

Antonin de Fougerolles; Hans-Peter Vornlocher; John Maraganore; Judy Lieberman

RNA interference (RNAi) quietly crept into biological research in the 1990s when unexpected gene-silencing phenomena in plants and flatworms first perplexed scientists. Following the demonstration of RNAi in mammalian cells in 2001, it was quickly realized that this highly specific mechanism of sequence-specific gene silencing might be harnessed to develop a new class of drugs that interfere with disease-causing or disease-promoting genes. Here we discuss the considerations that go into developing RNAi-based therapeutics starting from in vitro lead design and identification, to in vivo pre-clinical drug delivery and testing. We conclude by reviewing the latest clinical experience with RNAi therapeutics.


Nature Biotechnology | 2005

Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors

Erwei Song; Pengcheng Zhu; Sang Kyung Lee; Dipanjan Chowdhury; Steven Kussman; Derek M. Dykxhoorn; Yi Feng; Deborah Palliser; David B. Weiner; Premlata Shankar; Wayne A. Marasco; Judy Lieberman

Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.


Nature Medicine | 2002

siRNA-directed inhibition of HIV-1 infection.

Carl D. Novina; Michael F. Murray; Derek M. Dykxhoorn; Paul J. Beresford; Jonathan W. Riess; Sang Kyung Lee; Ronald G. Collman; Judy Lieberman; Premlata Shankar; Phillip A. Sharp

RNA interference silences gene expression through short interfering 21–23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.


Cell | 2011

Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs

Yvonne Tay; Lev Kats; Leonardo Salmena; Dror Weiss; Shen Mynn Tan; Ugo Ala; Florian A. Karreth; Laura Poliseno; Paolo Provero; Ferdinando Di Cunto; Judy Lieberman; Isidore Rigoutsos; Pier Paolo Pandolfi

Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs.


Nature Reviews Immunology | 2003

The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal

Judy Lieberman

Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.


Nature Genetics | 2007

Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus

Min Ae Lee-Kirsch; Maolian Gong; Dipanjan Chowdhury; Lydia Senenko; Kerstin Engel; Young-Ae Lee; Udesh de Silva; Suzanna L. Bailey; Torsten Witte; Timothy J. Vyse; Juha Kere; Christiane Pfeiffer; Scott Harvey; Andrew Wong; Sari Koskenmies; Oliver Hummel; Klaus Rohde; Reinhold E. Schmidt; Anna F. Dominiczak; Manfred Gahr; Thomas Hollis; Fred W. Perrino; Judy Lieberman; Norbert Hubner

TREX1 acts in concert with the SET complex in granzyme A–mediated apoptosis, and mutations in TREX1 cause Aicardi-Goutières syndrome and familial chilblain lupus. Here, we report monoallelic frameshift or missense mutations and one 3′ UTR variant of TREX1 present in 9/417 individuals with systemic lupus erythematosus but absent in 1,712 controls (P = 4.1 × 10−7). We demonstrate that two mutant TREX1 alleles alter subcellular targeting. Our findings implicate TREX1 in the pathogenesis of SLE.


Cell | 2003

Tumor Suppressor NM23-H1 Is a Granzyme A-Activated DNase during CTL-Mediated Apoptosis, and the Nucleosome Assembly Protein SET Is Its Inhibitor

Zusen Fan; Paul J. Beresford; David Y. Oh; Dong Zhang; Judy Lieberman

Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.

Collaboration


Dive into the Judy Lieberman's collaboration.

Top Co-Authors

Avatar

Premlata Shankar

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashish Lal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Manjunath

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Researchain Logo
Decentralizing Knowledge