Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Manjunath is active.

Publication


Featured researches published by N. Manjunath.


Nature | 2003

Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells.

J. Rodrigo Mora; María Rosa Bono; N. Manjunath; Wolfgang Weninger; Lois L. Cavanagh; Mario Rosemblatt; Ulrich H. von Andrian

Whereas naive T cells migrate only to secondary lymphoid organs, activation by antigen confers to T cells the ability to home to non-lymphoid sites. Activated effector/memory T cells migrate preferentially to tissues that are connected to the secondary lymphoid organs where antigen was first encountered. Thus, oral antigens induce effector/memory cells that express essential receptors for intestinal homing, namely the integrin α4β7 and CCR9, the receptor for the gut-associated chemokine TECK/CCL25 (refs 6, 8, 9). Here we show that this imprinting of gut tropism is mediated by dendritic cells from Peyers patches. Stimulation of CD8-expressing T cells by dendritic cells from Peyers patches, peripheral lymph nodes and spleen induced equivalent activation markers and effector activity in T cells, but only Peyers patch dendritic cells induced high levels of α4β7, responsiveness to TECK and the ability to home to the small intestine. These findings establish that Peyers patch dendritic cells imprint gut-homing specificity on T cells, and thus license effector/memory cells to access anatomical sites most likely to contain their cognate antigen.


Nature | 2007

Transvascular delivery of small interfering RNA to the central nervous system

Priti Kumar; Haoquan Wu; Jodi L. McBride; Kyeong Eun Jung; Moon Hee Kim; Beverly L. Davidson; Sang Kyung Lee; Premlata Shankar; N. Manjunath

A major impediment in the treatment of neurological diseases is the presence of the blood–brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood–brain barrier.


Cell | 2008

T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice

Priti Kumar; Hong Seok Ban; Sangsoo Kim; Haoquan Wu; Todd Pearson; Dale L. Greiner; Amale Laouar; Jiahong Yao; Viraga Haridas; Katsuyoshi Habiro; Yong-Guang Yang; Ji Hoon Jeong; Kuen Yong Lee; Yong Hee Kim; Sung Wan Kim; Matthias Peipp; Georg H. Fey; N. Manjunath; Leonard D. Shultz; Sang Kyung Lee; Premlata Shankar

Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.


PLOS ONE | 2007

miRNA Profiling of Naïve, Effector and Memory CD8 T Cells

Haoquan Wu; Joel R. Neilson; Priti Kumar; Monika Manocha; Premlata Shankar; Phillip A. Sharp; N. Manjunath

microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods-small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for ∼60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3′end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.


Journal of Virology | 2003

Sustained Small Interfering RNA-Mediated Human Immunodeficiency Virus Type 1 Inhibition in Primary Macrophages

Erwei Song; Sang Kyung Lee; Derek M. Dykxhoorn; Carl D. Novina; Dong Zhang; Keith D. Crawford; Jan Cerny; Phillip A. Sharp; Judy Lieberman; N. Manjunath; Premlata Shankar

ABSTRACT Small interfering RNAs (siRNAs) can induce potent gene silencing by degradation of cognate mRNA. However, in dividing cells, the silencing lasts only 3 to 7 days, presumably because of siRNA dilution with cell division. Here, we investigated if sustained siRNA-mediated silencing of human immunodeficiency virus type 1 (HIV-1) is possible in terminally differentiated macrophages, which constitute an important reservoir of HIV in vivo. CCR5, the major HIV-1 coreceptor in macrophages, and the viral structural gene for p24 were targeted either singly or in combination. When transfected 2 days prior to infection, both CCR5 and p24 siRNAs effectively reduced HIV-1 infection for the entire 15-day period of observation, and combined targeting of both genes abolished infection. To investigate whether exogenously introduced siRNA is maintained stably in macrophages, we tested the kinetics of siRNA-mediated viral inhibition by initiating infections at various times (2 to 15 days) after transfection with CCR5 and p24 siRNAs. HIV suppression mediated by viral p24 siRNA progressively decreased and was lost by day 7 posttransfection. In contrast, viral inhibition by cellular CCR5 knockdown was sustained even when transfection preceded infection by 15 days, suggesting that the continued presence of target RNA may be needed for persistence of siRNA. The longer sustenance of CCR5 relative to p24 siRNA in uninfected macrophages was also confirmed by detection of internalized siRNA by modified Northern blot analysis. We also tested the potential of p24 siRNA to stably silence HIV in the setting of an established infection where the viral target gene is actively transcribed. Under these circumstances, long-term suppression of HIV replication could be achieved with p24 siRNA. Thus, siRNAs can induce potent and long-lasting HIV inhibition in nondividing cells such as macrophages.


Molecular Therapy | 2010

RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice.

Sangsoo Kim; Dan Peer; Priti Kumar; Sandesh Subramanya; Huaquan Wu; Deshratan Asthana; Katsuyoshi Habiro; Yong-Guang Yang; N. Manjunath; Motomu Shimaoka; Premlata Shankar

RNA interference (RNAi)-mediated knockdown of gene expression offers a novel treatment strategy for human immunodeficiency virus (HIV) infection. However, the major hurdle for clinical use is a practical strategy for small interfering RNA (siRNA) delivery to the multiple immune cell types important in viral pathogenesis. We have developed a novel immunoliposome method targeting the lymphocyte function-associated antigen-1 (LFA-1) integrin expressed on all leukocytes and evaluated it for systemic delivery of siRNA in a humanized mouse model. We show that in vivo administration of the LFA-1 integrin-targeted and stabilized nanoparticles (LFA-1 I-tsNPs) results in selective uptake of siRNA by T cells and macrophages, the prime targets of HIV. Further, in vivo administration of anti-CCR5 siRNA/LFA-1 I-tsNPs resulted in leukocyte-specific gene silencing that was sustained for 10 days. Finally, humanized mice challenged with HIV after anti-CCR5 siRNA treatment showed enhanced resistance to infection as assessed by the reduction in plasma viral load and disease-associated CD4 T-cell loss. This study demonstrates the potential in vivo applicability of LFA-1-directed siRNA delivery as anti-HIV prophylaxis.


Advanced Drug Delivery Reviews | 2009

Lentiviral delivery of short hairpin RNAs

N. Manjunath; Haoquan Wu; Sandesh Subramanya; Premlata Shankar

In less than a decade after discovery, RNA interference-mediated gene silencing is already being tested as potential therapy in clinical trials for a number of diseases. Lentiviral vectors provide a means to express short hairpin RNA (shRNA) to induce stable and long-term gene silencing in both dividing and non-dividing cells and thus, are being intensively investigated for this purpose. However, induction of long-term shRNA expression can also cause toxicities by inducing off-target effects and interference with the endogenous micro-RNA (miRNA) pathway that regulates cellular gene expression. Recently, several advances have been made in the shRNA vector design to mimic cellular miRNA processing and to express multiplex siRNAs in a tightly regulated and reversible manner to overcome toxicities. In this review we describe some of these advances, focusing on the progress made in the development of lentiviral shRNA delivery strategies to combat viral infections.


Molecular Therapy | 2010

Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment

Sangsoo Kim; Chunting Ye; Priti Kumar; Isaac M. Chiu; Sandesh Subramanya; Haoquan Wu; Premlata Shankar; N. Manjunath

Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.


Nature Immunology | 2005

CD70 + antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa

Amale Laouar; Viraga Haridas; Dorothy Vargas; Xia Zhinan; David Chaplin; René A. W. van Lier; N. Manjunath

One unresolved issue in gut immunity is how mucosal T lymphocytes are activated and which antigen-presenting cell (APC) is critical for the regulation of this process. We have identified a unique population of APCs that is exclusively localized in the lamina propria. These APCs constitutively expressed the costimulatory molecule CD70 and had antigen-presenting functions. After oral infection of mice with Listeria monocytogenes, proliferation and differentiation of antigen-specific T cells occurred in the gut mucosa in situ and blockade of CD70 costimulation abrogated the mucosal T cell proliferation and effector functions. Thus, a potent CD70-dependent stimulation via specialized tissue-specific APCs is required for the proliferation and differentiation of gut mucosal T cells after oral infection.


Trends in Molecular Medicine | 2009

Strategies for targeted nonviral delivery of siRNAs in vivo

Sangsoo Kim; Himanshu Garg; Anjali Joshi; N. Manjunath

Silencing specific gene expression by RNA interference (RNAi) has rapidly become a standard tool for the reverse genetic analysis of gene functions. It also has tremendous potential for managing diseases for which effective treatment is currently unavailable or suboptimal. However, the poor cellular uptake of synthetic small interfering RNAs (siRNAs) is a major impediment for their clinical use. Great progress has been made in recent years to overcome this barrier, and several methods have been described for the in vivo delivery of siRNA. Moreover, the latest advances have focused on achieving targeted siRNA delivery restricted to relevant tissues and cell types in vivo. These approaches are expected to reduce the dose requirement as well as minimize siRNA-induced toxicities, thereby advancing the field of siRNA therapy towards clinical use.

Collaboration


Dive into the N. Manjunath's collaboration.

Top Co-Authors

Avatar

Premlata Shankar

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Haoquan Wu

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Chunting Ye

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Sojan Abraham

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Judy Lieberman

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guohua Yi

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Jang Gi Choi

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge