Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judy Westrick is active.

Publication


Featured researches published by Judy Westrick.


Analytical and Bioanalytical Chemistry | 2010

A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment

Judy Westrick; David C. Szlag; Benjamin Southwell; James Sinclair

This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, “ancillary practice” refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, “auxiliary practice” refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and β-N-methylamino-l-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.


Water Research | 2012

Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples

Xuexiang He; Miguel Pelaez; Judy Westrick; Kevin E. O’Shea; Anastasia Hiskia; Theodoros M. Triantis; Triantafyllos Kaloudis; Mihaela I. Stefan; Armah A. de la Cruz; Dionysios D. Dionysiou

The destruction of the commonly found cyanobacterial toxin, microcystin-LR (MC-LR), in surface waters by UV-C/H(2)O(2) advanced oxidation process (AOP) was studied. Experiments were carried out in a bench scale photochemical apparatus with low pressure mercury vapor germicidal lamps emitting at 253.7 nm. The degradation of MC-LR was a function of UV fluence. A 93.9% removal with an initial MC-LR concentration of 1 μM was achieved with a UV fluence of 80 mJ/cm(2) and an initial H(2)O(2) concentration of 882 μM. When increasing the concentration of MC-LR only, the UV fluence-based pseudo-first order reaction rate constant generally decreased, which was probably due to the competition between by-products and MC-LR for hydroxyl radicals. An increase in H(2)O(2) concentration led to higher removal efficiency; however, the effect of HO scavenging by H(2)O(2) became significant for high H(2)O(2) concentrations. The impact of water quality parameters, such as pH, alkalinity and the presence of natural organic matter (NOM), was also studied. Field water samples from Lake Erie, Michigan and St. Johns River, Florida were employed to evaluate the potential application of this process for the degradation of MC-LR. Results showed that the presence of both alkalinity (as 89.6-117.8 mg CaCO(3)/L) and NOM (as ∼2 to ∼9.5 mg/L TOC) contributed to a significant decrease in the destruction rate of MC-LR. However, a final concentration of MC-LR bellow the guideline value of 1 μg/L was still achievable under current experimental conditions when an initial MC-LR concentration of 2.5 μg/L was spiked into those real water samples.


Toxicon | 2010

Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry

Stuart A. Oehrle; Ben Southwell; Judy Westrick

Several freshwater cyanobacteria species have the capability to produce toxic compounds, frequently referred to as cyanotoxins. The most prevalent of these cyanotoxins is microcystin LR. Recognizing the potential health risk, France, Italy, Poland, Australia, Canada, and Brazil have set either standards or guidelines for the amount of microcystin LR permissible in drinking water based on the World Health Organization guideline of one microg/L of microcystin LR. Recently, the United States Environmental Protection Agency has begun to evaluate the occurrence and health effects of cyanotoxins and their susceptibility to water treatment under the Safe Drinking Water Act through the Contaminant Candidate List (CCL). A recent update of the Contaminant Candidate List focuses research and data collection on the cyanotoxins microcystin LR, anatoxin-a, and cylindrospermopsin. Liquid Chromatography/Tandem-Mass Spectrometry (LC/MS/MS) is a powerful tool for the analysis of various analytes in a wide variety of matrices because of its sensitivity and selectivity. The use of smaller column media (sub 2 microm particles) was investigated to both improve the speed, sensitivity and resolution, and to quantify the CCL cyanotoxins, in a single analysis, using Ultra-Performance Liquid Chromatography (UPLC) combined with tandem mass spectrometry. Natural waters and spiked samples were analyzed to show proof-of-performance. The presented method was able to clearly resolve each of the cyanotoxins in less than eight minutes with specificity and high spike recoveries.


Harmful Algae | 2016

Toxic cyanobacteria and drinking water: Impacts, detection, and treatment

Xuexiang He; Yen-Ling Liu; Amanda Conklin; Judy Westrick; Linda K. Weavers; Dionysios D. Dionysiou; John J. Lenhart; Paula J. Mouser; David Szlag; Harold W. Walker

Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators.


Toxins | 2015

Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants

David Szlag; James Sinclair; Benjamin Southwell; Judy Westrick

An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.


Archive | 2010

Sources and Occurrence of Cyanotoxins Worldwide

Miguel Pelaez; Maria G. Antoniou; Xuexiang He; Dionysios D. Dionysiou; Armah A. de la Cruz; Katerina Tsimeli; Theodoros M. Triantis; Anastasia Hiskia; Triantafyllos Kaloudis; Christopher D. Williams; Mark T. Aubel; Andrew Chapman; Amanda J. Foss; Urooj Khan; Kevin E. O’Shea; Judy Westrick

The eutrophication of water resources, mainly attributed to antrophogenic activities such as sewage and agricultural runoffs, has led to a worldwide increase in the formation of cyanobacterial harmful algal blooms (Cyano-HABs). Cyano-HABs have the ability to produce and release toxic compounds, commonly known as cyanotoxins, which comprise a potent threat for human and animal health as well as negative economical impacts. This chapter presents an overview on the sources and occurrence of species of cyanobacteria and their association with the production of cyanotoxins throughout the world. The main bloom-forming cyanobacteria that have been detected include Microcystis, Cylindrospermopsis, Anabaena, Aphanizomenon, and Planktothrix. The main cyanotoxins related to these cyanobacteria are microcystins, cylindrospermopsin, anatoxin-a and saxitoxins.


Toxicology Letters | 2018

Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss

Samson Jamesdaniel; Rita Rosati; Judy Westrick; Douglas M. Ruden

Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways.


Journal of Chromatography A | 2018

Development and applications of solid-phase extraction and liquid chromatography-mass spectrometry methods for quantification of microcystins in urine, plasma, and serum

Dilrukshika S.W. Palagama; David Baliu-Rodriguez; Apurva Lad; Bruce S. Levison; David J. Kennedy; Steven T. Haller; Judy Westrick; Kenneth Hensley; Dragan Isailovic

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 μg/L and 10 μg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 μg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 μg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 μg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 μg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 μg of MC-LR per kg bodyweight contained on average 1.30 μg/L of MC-LR (n = 8), while mice administered 100 μg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 μg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.


Journal of Environmental Engineering | 2006

Inactivation Kinetics of the Cyanobacterial Toxin Microcystin-LR by Free Chlorine

Irene Xagoraraki; Gregory W. Harrington; Kimberly Zulliger; Benjamim Zeier; William Krick; Dawn A. Karner; Jon H. Standridge; Judy Westrick


Journal American Water Works Association | 2003

Everything a Manager Should Know About Algal Toxins but Was Afraid to Ask

Judy Westrick

Collaboration


Dive into the Judy Westrick's collaboration.

Top Co-Authors

Avatar

Stuart A. Oehrle

Northern Kentucky University

View shared research outputs
Top Co-Authors

Avatar

David Szlag

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuexiang He

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Armah A. de la Cruz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Benjamin Southwell

Lake Superior State University

View shared research outputs
Top Co-Authors

Avatar

James Sinclair

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kevin E. O’Shea

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Miguel Pelaez

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge