Juergen C. Jung
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juergen C. Jung.
Nature Methods | 2005
Benjamin A. Flusberg; Eric D. Cocker; Wibool Piyawattanametha; Juergen C. Jung; Eunice L. M. Cheung; Mark J. Schnitzer
Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components.
Nature Methods | 2008
Benjamin A. Flusberg; Axel Nimmerjahn; Eric D. Cocker; Eran A. Mukamel; Robert P. J. Barretto; Tony H. Ko; Laurie D. Burns; Juergen C. Jung; Mark J. Schnitzer
A central goal in biomedicine is to explain organismic behavior in terms of causal cellular processes. However, concurrent observation of mammalian behavior and underlying cellular dynamics has been a longstanding challenge. We describe a miniaturized (1.1 g mass) epifluorescence microscope for cellular-level brain imaging in freely moving mice, and its application to imaging microcirculation and neuronal Ca2+ dynamics.
Optics Letters | 2005
Benjamin A. Flusberg; Juergen C. Jung; Eric D. Cocker; Erik P. Anderson; Mark J. Schnitzer
We introduce a compact two-photon fluorescence microendoscope based on a compound gradient refractive index endoscope probe, a DC micromotor for remote adjustment of the image plane, and a flexible photonic bandgap fiber for near distortion-free delivery of ultrashort excitation pulses. The imaging head has a mass of only 3.9 g and provides micrometer-scale resolution. We used portable two-photon microendoscopy to visualize hippocampal blood vessels in the brains of live mice.
Optics Letters | 2009
Wibool Piyawattanametha; Eric D. Cocker; Laurie D. Burns; Robert P. J. Barretto; Juergen C. Jung; Hyejun Ra; Olav Solgaard; Mark J. Schnitzer
We present a two-photon microscope that is approximately 2.9 g in mass and 2.0 x 1.9 x 1.1 cm(3) in size and based on a microelectromechanical systems (MEMS) laser-scanning mirror. The microscope has a focusing motor and a micro-optical assembly composed of four gradient refractive index lenses and a dichroic microprism. Fluorescence is captured without the detected emissions reflecting off the MEMS mirror, by use of separate optical fibers for fluorescence collection and delivery of ultrashort excitation pulses. Using this microscope we imaged neocortical microvasculature and tracked the flow of erythrocytes in live mice.
Current Opinion in Neurobiology | 2004
Amit D. Mehta; Juergen C. Jung; Benjamin A. Flusberg; Mark J. Schnitzer
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications.
Otology & Neurotology | 2006
Ashkan Monfared; Nikolas H. Blevins; Eunice L. M. Cheung; Juergen C. Jung; Gerald R. Popelka; Mark J. Schnitzer
Aims: We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Background: Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. Methods: We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. Results: We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 μm/s. Conclusion: Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.
international conference on optical mems and nanophotonics | 2007
Wibool Piyawattanametha; Eric D. Cocker; Robert P. J. Barretto; Juergen C. Jung; Benjamin A. Flusberg; Hyejun Ra; Olav Solgaard; Mark J. Schnitzer
Towards overcoming the size limitations of conventional two-photon fluorescence microscopy for brain imaging in freely moving mice, we introduce a portable laser-scanning microendoscope based on a microelectromechanical systems (MEMS) two-dimensional (2-D) scanning mirror, compound gradient refractive index (GRIN) micro-lenses, and a photonic bandgap fiber (PBF). The microendoscope achieves fast line scanning acquisition rates up to 3.5 kHz and micron-scale imaging resolution.
conference on lasers and electro-optics | 2005
Benjamin A. Flusberg; Juergen C. Jung; Eric D. Cocker; Erik P. Anderson; Mark J. Schnitzer
We introduce a compact and lightweight (3.7 g) two-photon fluorescence microendoscope, which is based on a flexible photonic bandgap fiber and a DC micromotor, and which is designed for brain imaging in freely moving mice.
Journal of Neurophysiology | 2004
Juergen C. Jung; Amit D. Mehta; Emre Aksay; Raymond Stepnoski; Mark J. Schnitzer
Nature Medicine | 2011
Robert P. J. Barretto; Tony H. Ko; Juergen C. Jung; Tammy J Wang; George Capps; Allison C Waters; Yaniv Ziv; Alessio Attardo; Lawrence Recht; Mark J. Schnitzer