Juha Heijari
University of Eastern Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juha Heijari.
PLOS ONE | 2008
Elina Mäntylä; Giorgio A. Alessio; James D. Blande; Juha Heijari; Jarmo K. Holopainen; Toni Laaksonen; Panu Piirtola; Tero Klemola
Background An understanding of the evolution of potential signals from plants to the predators of their herbivores may provide exciting examples of co-evolution among multiple trophic levels. Understanding the mechanism behind the attraction of predators to plants is crucial to conclusions about co-evolution. For example, insectivorous birds are attracted to herbivore-damaged trees without seeing the herbivores or the defoliated parts, but it is not known whether birds use cues from herbivore-damaged plants with a specific adaptation of plants for this purpose. Methodology We examined whether signals from damaged trees attract avian predators in the wild and whether birds could use volatile organic compound (VOC) emissions or net photosynthesis of leaves as cues to detect herbivore-rich trees. We conducted a field experiment with mountain birches (Betula pubescens ssp. czerepanovii), their main herbivore (Epirrita autumnata) and insectivorous birds. Half of the trees had herbivore larvae defoliating trees hidden inside branch bags and half had empty bags as controls. We measured predation rate of birds towards artificial larvae on tree branches, and VOC emissions and net photosynthesis of leaves. Principal Findings and Significance The predation rate was higher in the herbivore trees than in the control trees. This confirms that birds use cues from trees to locate insect-rich trees in the wild. The herbivore trees had decreased photosynthesis and elevated emissions of many VOCs, which suggests that birds could use either one, or both, as cues. There was, however, large variation in how the VOC emission correlated with predation rate. Emissions of (E)-DMNT [(E)-4,8-dimethyl-1,3,7-nonatriene], β-ocimene and linalool were positively correlated with predation rate, while those of highly inducible green leaf volatiles were not. These three VOCs are also involved in the attraction of insect parasitoids and predatory mites to herbivore-damaged plants, which suggests that plants may not have specific adaptations to signal only to birds.
Entomologia Experimentalis Et Applicata | 2005
Juha Heijari; Anne-Marja Nerg; Pirjo Kainulainen; Heli Viiri; Martti Vuorinen; Jarmo K. Holopainen
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm, and 100 mm) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.
New Phytologist | 2010
Sari J. Himanen; James D. Blande; Tero Klemola; Juha T. Pulkkinen; Juha Heijari; Jarmo K. Holopainen
Plant-emitted semi-volatile compounds have low vaporization rates at 20-25 degrees C and may therefore persist on surfaces such as plant foliage. The passive adsorption of arthropod-repellent semi-volatiles to neighbouring foliage could convey associational resistance, whereby a plants neighbours reduce damage caused by herbivores. We found that birch (Betula spp.) leaves adsorb and re-release the specific arthropod-repelling C(15) semi-volatiles ledene, ledol and palustrol produced by Rhododendron tomentosum when grown in mixed association in a field setup. In a natural habitat, a higher concentration of ledene was released from birches neighbouring R. tomentosum than from birches situated > 5 m from R. tomentosum. Emission of alpha-humulene, a sesquiterpene synthesized by both Betula pendula and R. tomentosum, was also increased in R. tomentosum-neighbouring B. pendula. In assessments for associational resistance, we found that the polyphagous green leaf weevils (Polydrusus flavipes) and autumnal moth (Epirrita autumnata) larvae both preferred B. pendula to R. tomentosum. P. flavipes also preferred birch leaves not exposed to R. tomentosum to leaves from mixed associations. In the field, a reduction in Euceraphis betulae aphid density occurred in mixed associations. Our results suggest that plant/tree species may be protected by semi-volatile compounds emitted by a more herbivore-resistant heterospecific neighbour.
The Open Forest Science Journal | 2009
Jarmo K. Holopainen; Juha Heijari; Anne-Marja Nerg; Martti Vuorinen; Pirjo Kainulainen
Elicitors are compounds, which activate chemical defences in plants. Various biosynthetic pathways are acti- vated in treated plants depending on the compound used. The most intensively studied elicitor for manipulating defence pathways in plants is methyl jasmonate, which modifies e.g. the production of terpenoids, the main constituents of conifer oleoresin. Other commonly tested chemical elicitors are salicylic acid, methyl salicylate and benzothiadiazole, which af- fect production of phenolic compounds in plants. Both jasmonate-based and salicylate-based elicitors have been shown to have suppressive effects on fungal diseases and insect pests of plants. So far, knowledge regarding the efficiency of elici- tor treatments for enhancing pest and fungal disease resistance of conifer seedlings is very limited. We review current knowledge of the effect of these elicitor compounds on pest and disease resistance in plants, and we analyze the potential pros and cons of using elicitors for future pest management strategies in forest nurseries.
Entomologia Experimentalis Et Applicata | 2008
Juha Heijari; Anne-Marja Nerg; Pirjo Kainulainen; Martti Vuorinen; Jarmo K. Holopainen
Scots pine [Pinus sylvestris L. (Pinaceae)] trees with four different seed origins were exposed to exogenous applications of the elicitor, methyl jasmonate (MeJA), for three consecutive years. We studied the effects of MeJA on needle chemistry (including monoterpenes, sesquiterpenes, and tricyclic resin acids), plant growth, and the performance of two diprionid sawflies, the European pine sawfly (Neodiprion sertifer Geoffr.) and the common pine sawfly (Diprion pini L.) (both Hymenoptera: Diprionidae). In general, foliar MeJA application affected the whole range of needle secondary chemistry with significantly higher concentrations of two monoterpenes, β‐pinene and limonene, in particular. Furthermore, for some seed origins the growth rates of N. sertifer and D. pini larvae were lower on needles of MeJA‐treated plants with either high total terpene or high resin acid concentrations. However, inconsistencies in diprionid sawfly performance within each studied Scots pine origin suggest genetic variance in needle secondary chemistry. The differences between selected seed origins and notably variable responses to MeJA application imply that adaptation of the seed to new conditions may have had an impact on secondary chemistry and, thus, on insect performance. Finally, our results suggest that modification of Scots pine defence by a low‐concentration exogenous elicitor affects the production of terpenoids in the newly growing needles, leading to poorer pine sawfly performance in origins with high terpenoid content, while not harming the growth of Scots pine trees.
Journal of Chemical Ecology | 2004
Anne-Marja Nerg; Juha Heijari; U. Noldt; Hannu Viitanen; Martti Vuorinen; Pirjo Kainulainen; Jarmo K. Holopainen
We tested how terpenoid (i.e., monoterpenes and resin acids) composition and concentration in wood affects resistance against wood-borers and decaying fungi. Scots pine (Pinus sylvestris) wood from nine provenances having variable terpenoid profiles was studied against the old house borer, Hylotrupes bajulus, and the decay fungus, Coniophora puteana. Provenances represented a 1200-km N–S transect from Estonia to northern Finland, but they were all cultivated for 7 years in the same nursery field, in central Finland. Mean relative growth rate (MRGR) of small H. bajulus larvae positively correlated with the total monoterpene concentration of wood, and feeding was associated with high proportion of levopimaric+palustric acid in wood. Provenance did not affect the MRGR of small or big larvae, but big larvae consumed more wood and produced more frass on the northern Ylitornio trees than on the southern Rakvere and Ruokolahti trees. Low β-pinene and total monoterpene concentration and low β: α-pinene ratio in wood were all associated with a high number of eggs. The most northern Muonio provenance was the most favored as an oviposition site, differing significantly from Saaremaa, Tenhola, and Suomussalmi. Wood from Saaremaa, Tenhola, Ruokolahti, and Suomussalmi provenance was most resistant against decay fungus, differing significantly from that of Kinnula provenance. However, decay resistance was not clearly associated with the concentrations of wood terpenoids. These results suggest that monoterpene composition of wood affects resistance against wood-boring Cerambycid beetles, but resistance against wood-decaying fungi is not as clearly associated with wood terpenoids.
Journal of Chemical Ecology | 2010
Jarmo K. Holopainen; Juha Heijari; Elina Oksanen; Giorgio A. Alessio
Deciduous trees remobilize the nitrogen in leaves during the process of autumn coloration, thus providing a high quality food source for aphids preparing to lay over-wintering eggs. It has been suggested that aphids may use volatile organic compounds (VOCs) to: (a) select leaves where nutrient remobilization has started and induced defenses are reduced; and (b) detect the time of leaf abscission. We analyzed VOCs emitted by the foliage of Betula pendula Roth. during autumn coloration and from leaf litter just after leaf fall. We tested the hypothesis that costly, photosynthesis-related terpenes and other herbivore-induced VOCs related to attraction of aphid parasitoids and predators are reduced during the coloration process. We also investigated if the VOC emission profile of abscising leaves is different from that of early stage yellowing leaves. Enemy-luring compounds (E)-β-ocimene, linalool, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted only from the green foliage. Methyl salicylate (MeSa), known to recruit predatory bugs and attract migrant aphids, was emitted until the first stage of color change. Cis-3-hexenol, an indicator of cellular disintegration, became dominant in the emissions from abscising leaves and from fresh leaf litter. We discuss the ecological significance of the observed changes in birch leaf VOC profiles during the process of autumn senescence.
Plant Biology | 2012
G. Semiz; James D. Blande; Juha Heijari; Kani Isik; Ülo Niinemets; Jarmo K. Holopainen
Plant defence can be induced by exposing plants to the plant hormone jasmonic acid (JA) or its volatile ester, methyl jasmonate (MeJA). Carrageenans (Carr) - sulphated D-galactans extracted from red algae - can also induce plant defences. In this study, the effects of exogenous MeJA and Carr application (concentration 300 and 12.7 μmol, respectively) on volatile emissions from two widespread evergreen woody species, Pinus sylvestris (nine Turkish and one Finnish provenance) and Quercus ilex (Italian provenance) were investigated. We collected headspace samples from seedlings and analysed the quality and quantity of volatile compounds emitted by treated and control plants. In total, 19 monoterpenes, 10 sesquiterpenes, 10 green leaf volatiles (GLVs) and two aromatic compounds were emitted by P. sylvestris from all the provenances studied. Foliar MeJA application clearly affected the volatile profiles of trees from all the provenances. Effects of Carr were genotype specific. In Q. ilex, emissions of sesquiterpenes, GLVs and the homoterpene (E)-DMNT were all induced by MeJA application. However, emissions of most constitutively emitted monoterpenes were significantly reduced. Carr application also led to a significant reduction in monoterpene emissions, but without corresponding increases in other emissions. Our results indicate that exogenously applied MeJA and Carr can both significantly modify the volatile profiles of P. sylvestris and Q. ilex, but also that there are important provenance- and species-specific differences in the overall degree of elicitation and compositions of elicited compounds.
Trees-structure and Function | 2005
Juha Heijari; Anne-Marja Nerg; Seija Kaakinen; Elina Vapaavuori; Hannu Raitio; Teuvo Levula; Hannu Viitanen; Jarmo K. Holopainen; Pirjo Kainulainen
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.
Entomologia Experimentalis Et Applicata | 2010
Juha Heijari; Anne-Marja Nerg; Jarmo K. Holopainen; Pirjo Kainulainen
Four‐year‐old Scots pine [Pinus sylvestris L. (Pinaceae)] seedlings were exposed to medium and severe drought stress for two consecutive years. The anatomical properties of drought‐stressed Scots pine wood and their impact on the performance of destructive wood boring early instars of Hylotrupes bajulus L. (Coleoptera: Cerambycidae) were studied. Drought stress significantly decreased diameter of earlywood tracheids in both growing years and diameter of latewood tracheids after the second growing season only. Cell lumen area was significantly decreased by both medium and severe drought stress compared to well‐watered controls. In addition, area of cell lumen was significantly smaller in severe drought than in medium drought treatment. The drought stress marginally increased the number of resin canals in the wood, but did not affect the size of resin canals either in wood or bark. The relative growth rate of xylophagous H. bajulus neonatal larvae was not significantly affected by drought stress during the 106‐day feeding period on Scots pine wood blocks. The results show that although water availability was an important factor affecting the development and anatomy of wood cells, observed changes in wood characteristics did not affect the performance of early instars feeding on wood processed from drought‐stressed young Scots pine seedlings.