Juha-Pekka Pitkänen
VTT Technical Research Centre of Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juha-Pekka Pitkänen.
Metabolic Engineering | 2003
Juha-Pekka Pitkänen; Aristos Aristidou; Laura Salusjärvi; Laura Ruohonen; Merja Penttilä
This study focused on elucidating metabolism of xylose in a Saccharomyces cerevisiae strain that overexpresses xylose reductase and xylitol dehydrogenase from Pichia stipitis, as well as the endogenous xylulokinase. The influence of xylose on overall metabolism was examined supplemented with low glucose levels with emphasis on two potential bottlenecks; cofactor requirements and xylose uptake. Results of metabolic flux analysis in continuous cultivations show changes in central metabolism due to the cofactor imbalance imposed by the two-step oxidoreductase reaction of xylose to xylulose. A comparison between cultivations on 27:3g/L xylose-glucose mixture and 10g/L glucose revealed that the NADPH-generating flux from glucose-6-phosphate to ribulose-5-phosphate was almost tenfold higher on xylose-glucose mixture and due to the loss of carbon in that pathway the total flux to pyruvate was only around 60% of that on glucose. As a consequence also the fluxes in the citric acid cycle were reduced to around 60%. As the glucose level was decreased to 0.1g/L the fluxes to pyruvate and in the citric acid cycle were further reduced to 30% and 20%, respectively. The results from in vitro and in vivo xylose uptake measurements showed that the specific xylose uptake rate was highest at the lowest glucose level, 0.1g/L.
Microbial Cell Factories | 2008
Laura Salusjärvi; Matti Kankainen; Rabah Soliymani; Juha-Pekka Pitkänen; Merja Penttilä; Laura Ruohonen
BackgroundConsiderable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose.ResultsGenes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells.ConclusionThe results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains. Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis also occurred at a post-translational level, supporting prior findings.
Nature Communications | 2010
André B. Canelas; Nicola Harrison; Alessandro Fazio; Jie Zhang; Juha-Pekka Pitkänen; Joost van den Brink; Barbara M. Bakker; Lara Bogner; J. Bouwman; Juan I. Castrillo; Ayca Cankorur; Pramote Chumnanpuen; Pascale Daran-Lapujade; Duygu Dikicioglu; Karen van Eunen; Jennifer C. Ewald; Joseph J. Heijnen; Betul Kirdar; Ismo Mattila; F.I.C. Mensonides; Anja Niebel; Merja Penttilä; Jack T. Pronk; Matthias Reuss; Laura Salusjärvi; Uwe Sauer; David James Sherman; Martin Siemann-Herzberg; Hans V. Westerhoff; Johannes H. de Winde
The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae, a widely used model organism that is also used in the production of fuels, chemicals, food ingredients and pharmaceuticals. With the current focus on biofuels and sustainability, there is much interest in harnessing this species as a general cell factory. In this study, we characterized two yeast strains, under two standard growth conditions. We ensured the high quality of the experimental data by evaluating a wide range of sampling and analytical techniques. Here we show significant differences in the maximum specific growth rate and biomass yield between the two strains. On the basis of the integrated analysis of the high-throughput data, we hypothesize that differences in phenotype are due to differences in protein metabolism.
Applied Microbiology and Biotechnology | 2005
Juha-Pekka Pitkänen; Eija Rintala; Aristos Aristidou; Laura Ruohonen; Merja Penttilä
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l−1 xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h−1 vs 0.05 h−1). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l−1 xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g−1 CDW h−1 to 0.017 g g−1 CDW h−1 and the yield from 0.09 g g−1 xylose to 0.14 g g−1 xylose, respectively.
Yeast | 2003
Laura Salusjärvi; Marjo Poutanen; Juha-Pekka Pitkänen; Heini Koivistoinen; Aristos Aristidou; Nisse Kalkkinen; Laura Ruohonen; Merja Penttilä
Introduction of an active xylose utilization pathway into Saccharomyces cerevisiae, which does not naturally ferment pentose sugars, is likely to have a major impact on the overall cellular metabolism as the carbon introduced to the cells will now flow through the pentose phosphate pathway. The metabolic responses in the recombinant xylose‐fermenting S. cerevisiae were studied at the proteome level by comparative two‐dimensional gel electrophoresis of cellular proteins within a pH range of 3–10. Glucose‐limited chemostat cultivations and corresponding chemostat cultivations performed in media containing xylose as the major carbon source were compared. The cultivations were studied in aerobic and anaerobic metabolic steady states and in addition at time points 5, 30 and 60 min after the switch‐off of oxygen supply. We identified 22 proteins having a significant abundance difference on xylose compared to glucose, and 12 proteins that responded to change from aerobic to anaerobic conditions on both carbon sources. On xylose in all conditions studied, major changes were seen in the abundance of alcohol dehydrogenase 2 (Adh2p), acetaldehyde dehydrogenases 4 and 6 (Ald4p and Ald6p), and DL‐glycerol 3‐phosphatase (Gpp1p). Our results give indications of altered metabolic fluxes especially in the acetate and glycerol pathways in cells growing on xylose compared to glucose. Copyright
Applied Biochemistry and Biotechnology | 2006
Laura Salusjärvi; Juha-Pekka Pitkänen; Aristos Aristidou; Laura Ruohonen; Merja Penttilä
Lignocellulosic biomass, rich in hexose and pentose sugars, is an attractive resource for commercially viable bioethanol production. Saccharomyces cerevisiae efficiently ferments hexoses but is naturally unable to utilize pentoses. Metabolic engineering of this yeast has resulted in strains capable of xylose utilization. However, even the best recombinant S. cerevisiae strains of today metabolize xylose with a low rate compared to glucose. This study compares the transcript profiles of an S. cerevisiae strain engineered to utilize xylose via the xylose reductase-xylitol dehydrogenase pathway in aerobic chemostat cultures with glucose or xylose as the main carbon source. Compared to the glucose culture, 125 genes were upregulated, whereas 100 genes were downregulated in the xylose culture. A number of genes encoding enzymes capable of nicotinamide adenine dinucleotide phosphate regeneration were upregulated in the xylose culture. Furthermore, xylose provoked increased activities of the pathways of acetyl-CoA synthesis and sterol biosynthesis. Notably, our results suggest that cells metabolizing xylose are not in a completely repressed or in a derepressed state either, indicating that xylose was recognized neither as a fermentable nor as a respirative carbon source. In addition, a considerable number of the changes observed in the gene expression between glucose and xylose samples were closely related to the starvation response.
BMC Genomics | 2009
Eija Rintala; Mervi Toivari; Juha-Pekka Pitkänen; Marilyn G. Wiebe; Laura Ruohonen; Merja Penttilä
BackgroundThe industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the transcriptome and proteome of S. cerevisiae in glucose-limited chemostat cultivations in anaerobic and aerobic conditions, and with three intermediate (0.5, 1.0 and 2.8% oxygen) levels of oxygen in the feed gas.ResultsThe main differences in the transcriptome were observed in the comparison of fully aerobic, intermediate oxygen and anaerobic conditions, while the transcriptome was generally unchanged in conditions receiving different intermediate levels (0.5, 1.0 or 2.8% O2) of oxygen in the feed gas. Comparison of the transcriptome and proteome data suggested post-transcriptional regulation was important, especially in 0.5% oxygen. In the conditions of intermediate oxygen, the genes encoding enzymes of the respiratory pathway were more highly expressed than in either aerobic or anaerobic conditions. A similar trend was also seen in the proteome and in enzyme activities of the TCA cycle. Further, genes encoding proteins of the mitochondrial translation machinery were present at higher levels in all oxygen-limited and anaerobic conditions, compared to fully aerobic conditions.ConclusionGlobal upregulation of genes encoding components of the respiratory pathway under conditions of intermediate oxygen suggested a regulatory mechanism to control these genes as a response to the need of more efficient energy production. Further, cells grown in three different intermediate oxygen levels were highly similar at the level of transcription, while they differed at the proteome level, suggesting post-transcriptional mechanisms leading to distinct physiological modes of respiro-fermentative metabolism.
Journal of Biological Chemistry | 2004
Juha-Pekka Pitkänen; Anssi Törmä; Susanne Alff; Laura Huopaniemi; Pirkko Mattila; Risto Renkonen
Phosphomannose isomerase (PMI40) catalyzes the conversion between fructose 6-phosphate and mannose 6-phosphate and thus connects glycolysis, i.e. energy production and GDP-mannose biosynthesis or cell wall synthesis in Saccharomyces cerevisiae. After PMI40 deletion (pmi-) the cells were viable only if fed with extracellular mannose and glucose. In an attempt to force the GDP-mannose synthesis in the pmi- strain by increasing the extracellular mannose concentrations, the cells showed significantly reduced growth rates without any alterations in the intracellular GDP-mannose levels. To reveal the mechanisms resulting in reduced growth rates, we measured genome-wide gene expression levels, several metabolite concentrations, and selected in vitro enzyme activities in central metabolic pathways. The increasing of the initial mannose concentration led to an increase in the mannose 6-phosphate concentration, which inhibited the activity of the second enzyme in glycolysis, i.e. phosphoglucose isomerase converting glucose 6-phosphate to fructose 6-phosphate. As a result of this limitation, the flux through glycolysis was decreased as was the median expression of the genes involved in glycolysis. The expression levels of RAP1, a transcription factor involved in the regulation of the mRNA levels of several enzymes in glycolysis, as well as those of cell cycle regulators CDC28 and CLN3, decreased concomitantly with the growth rates and expression of many genes encoding for enzymes in glycolysis.
Yeast | 2007
Eija Rintala; Juha-Pekka Pitkänen; Maija-Leena Vehkomäki; Merja Penttilä; Laura Ruohonen
The enzyme glyoxylate reductase reversibly reduces glyoxylate to glycolate, or alternatively hydroxypyruvate to D‐glycerate, using either NADPH or NADH as a co‐factor. The enzyme has multiple metabolic roles in different organisms. In this paper we show that GOR1 (ORF YNL274c) encodes a glyoxylate reductase and not a hydroxyisocaproate dehydrogenase in Saccharomyces cerevisiae, even though it also has minor activity on α‐ketoisocaproate. In addition, we show that deletion of the glyoxylate reductase‐encoding gene leads to higher biomass concentration after diauxic shift. Copyright
Biotechnology and Bioengineering | 2014
Suvi T. Häkkinen; Nicole Raven; Maurice Henquet; Marja-Leena Laukkanen; Tibor Anderlei; Juha-Pekka Pitkänen; Richard M. Twyman; Dirk Bosch; Kirsi-Marja Oksman-Caldentey; Stefan Schillberg; Anneli Ritala
Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To address these challenges, we used a design of experiments approach to develop an optimized induction protocol for the cultivation of tobacco hairy roots secreting the full‐size monoclonal antibody M12. The antibody yield was enhanced 30‐fold by the addition of 14 g/L KNO3, 19 mg/L 1‐naphthaleneacetic acid and 1.5 g/L of the stabilizing agent polyvinylpyrrolidone. Analysis of hairy root cross sections revealed that the optimized medium induced lateral root formation and morphological changes in the inner cortex and pericycle cells, indicating that the improved productivity was at least partially based on the enhanced efficiency of antibody secretion. We found that 57% of the antibody was secreted, yielding 5.9 mg of product per liter of induction medium. Both the secreted and intracellular forms of the antibody could be isolated by protein A affinity chromatography and their functionality was confirmed using vitronectin‐binding assays. Glycan analysis revealed three major plant complex‐type glycans on both forms of the antibody, although the secreted form was more homogeneous due to the predominance of a specific glycoform. Tobacco hairy root cultures therefore offer a practical solution for the production of homogeneous pharmaceutical antibodies in containment. Biotechnol. Bioeng. 2014;111: 336–346.