Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juha Pöyry is active.

Publication


Featured researches published by Juha Pöyry.


Ecology Letters | 2010

Habitat fragmentation causes immediate and time‐delayed biodiversity loss at different trophic levels

Jochen Krauss; Riccardo Bommarco; Moisès Guardiola; Risto K. Heikkinen; Aveliina Helm; Mikko Kuussaari; Regina Lindborg; Erik Öckinger; Meelis Pärtel; Joan Pino; Juha Pöyry; Katja M. Raatikainen; Anu Sang; Constantí Stefanescu; Tiit Teder; Martin Zobel; Ingolf Steffan-Dewenter

Intensification or abandonment of agricultural land use has led to a severe decline of semi-natural habitats across Europe. This can cause immediate loss of species but also time-delayed extinctions, known as the extinction debt. In a pan-European study of 147 fragmented grassland remnants, we found differences in the extinction debt of species from different trophic levels. Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt. In contrast, short-lived butterfly specialists showed no evidence for an extinction debt at a time scale of c. 40 years. Our results indicate that management strategies maintaining the status quo of fragmented habitats are insufficient, as time-delayed extinctions and associated co-extinctions will lead to further biodiversity loss in the future.


Ecology Letters | 2010

Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis

Erik Öckinger; Oliver Schweiger; Thomas O. Crist; Diane M. Debinski; Jochen Krauss; Mikko Kuussaari; Jessica D. Petersen; Juha Pöyry; Josef Settele; Keith S. Summerville; Riccardo Bommarco

There is a lack of quantitative syntheses of fragmentation effects across species and biogeographic regions, especially with respect to species life-history traits. We used data from 24 independent studies of butterflies and moths from a wide range of habitats and landscapes in Europe and North America to test whether traits associated with dispersal capacity, niche breadth and reproductive rate modify the effect of habitat fragmentation on species richness. Overall, species richness increased with habitat patch area and connectivity. Life-history traits improved the explanatory power of the statistical models considerably and modified the butterfly species-area relationship. Species with low mobility, a narrow feeding niche and low reproduction were most strongly affected by habitat loss. This demonstrates the importance of considering life-history traits in fragmentation studies and implies that both species richness and composition change in a predictable manner with habitat loss and fragmentation.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

New insights into butterfly–environment relationships using partitioning methods

Risto K. Heikkinen; Miska Luoto; Mikko Kuussaari; Juha Pöyry

Variation partitioning and hierarchical partitioning are novel statistical approaches that provide deeper understanding of the importance of different explanatory variables for biodiversity patterns than traditional regression methods. Using these methods, the variation in occupancy and abundance of the clouded apollo butterfly (Parnassius mnemosyne L.) was decomposed into independent and joint effects of larval and adult food resources, microclimate and habitat quantity. The independent effect of habitat quantity variables (habitat area and connectivity) captured the largest fraction of the variation in the clouded apollo patterns, but habitat connectivity had a major contribution only for occupancy data. The independent effects of resources and microclimate were higher on butterfly abundance than on occupancy. However, a considerable amount of variation in the butterfly patterns was accounted for by the joint effects of predictors and may thus be causally related to two or all three groups of variables. Abundance of the butterfly in the surroundings of the focal grid cell had a significant effect in all analyses, independently of the effects of other predictors. Our results encourage wider applications of partitioning methods in biodiversity studies.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

Dispersal capacity and diet breadth modify the response of wild bees to habitat loss.

Riccardo Bommarco; Jacobus C. Biesmeijer; Birgit Meyer; Simon G. Potts; Juha Pöyry; Stuart Roberts; Ingolf Steffan-Dewenter; Erik Öckinger

Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.


Ecology and Evolution | 2013

Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends

Sami P. Ojanen; Marko Nieminen; Evgeniy Meyke; Juha Pöyry; Ilkka Hanski

Long-term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long-term viability of species, but large-scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long-term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long-term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year-to-year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large-scale and long-term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long-term observational studies. For instance, in the case of the Glanville fritillary project, the long-term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life-history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long-term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.


Landscape Ecology | 2012

The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies

Erik Öckinger; Karl-Olof Bergman; Markus Franzén; Tomas Kadlec; Jochen Krauss; Mikko Kuussaari; Juha Pöyry; Henrik G. Smith; Ingolf Steffan-Dewenter; Riccardo Bommarco

The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.


Biodiversity and Conservation | 2008

Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models

Varpu Mitikka; Risto K. Heikkinen; Miska Luoto; Miguel B. Araújo; Kimmo Saarinen; Juha Pöyry; Stefan Fronzek

The two main goals of this study are: (i) to examine the range shifts of a currently northwards expanding species, the map butterfly (Araschnia levana), in relation to annual variation in weather, and (ii) to test the capability of a bioclimatic envelope model, based on broad-scale European distribution data, to predict recent distributional changes (2000–2004) of the species in Finland. A significant relationship between annual maximum dispersal distance of the species and late summer temperature was detected. This suggests that the map butterfly has dispersed more actively in warmer rather than cooler summers, the most notable dispersal events being promoted by periods of exceptionally warm weather and southerly winds. The accuracy of the broad-scale bioclimatic model built for the species with European data using Generalized Additive Models (GAM) was good based on split-sample evaluation for a single period. However, the model’s performance was poor when applied to predict range shifts in Finland. Among the many potential explanations for the poor success of the transferred bioclimatic model, is the fact that bioclimatic envelope models do not generally account for species dispersal. This and other uncertainties support the view that bioclimatic models should be applied with caution when they are used to project future range shifts of species.


Ecology Letters | 2014

Density of insect‐pollinated grassland plants decreases with increasing surrounding land‐use intensity

Yann Clough; Johan Ekroos; András Báldi; Péter Batáry; Riccardo Bommarco; Nicolas Gross; Andrea Holzschuh; Sebastian Hopfenmüller; Eva Knop; Mikko Kuussaari; Regina Lindborg; Lorenzo Marini; Erik Öckinger; Simon G. Potts; Juha Pöyry; Stuart Roberts; Ingolf Steffan-Dewenter; Henrik G. Smith

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.


Oecologia | 2011

Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change

Anu Valtonen; Matthew P. Ayres; Heikki Roininen; Juha Pöyry; Reima Leinonen

Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change. We studied phenological control systems in Lepidoptera by analyzing flight times recorded at a network of sites in Finland. We evaluated the strength and form of controls from temperature and photoperiod, and tested for geographic variation within species. Temperature controls on phenology were evident in 51% of 112 study species and for a third of those thermal controls appear to be modified by photoperiodic cues. For 24% of the total, photoperiod by itself emerged as the most likely control system. Species with thermal control alone should be most immediately responsive in phenology to climate warming, but variably so depending upon the minimum temperature at which appreciable development occurs and the thermal responsiveness of development rate. Photoperiodic modification of thermal controls constrains phenotypic responses in phenologies to climate change, but can evolve to permit local adaptation. Our results suggest that climate change will alter the phenological structure of the Finnish Lepidoptera community in ways that are predictable with knowledge of the proximate physiological controls. Understanding how phenological controls in Lepidoptera compare to that of their host plants and enemies could permit general inferences regarding climatic effects on mid- to high-latitude ecosystems.


Ecology and Evolution | 2014

Protected areas alleviate climate change effects on northern bird species of conservation concern

Raimo Virkkala; Juha Pöyry; Risto K. Heikkinen; Aleksi Lehikoinen; Jari Valkama

Global climate change is a major threat to biodiversity, posing increasing pressures on species to adapt in situ or shift their ranges. A protected area network is one of the main instruments to alleviate the negative impacts of climate change. Importantly, protected area networks might be expected to enhance the resilience of regional populations of species of conservation concern, resulting in slower species loss in landscapes with a significant amount of protected habitat compared to unprotected landscapes. Based on national bird atlases compiled in 1974–1989 and 2006–2010, this study examines the recent range shifts in 90 forest, mire, marshland, and Arctic mountain heath bird species of conservation concern in Finland, as well as the changes in their species richness in protected versus unprotected areas. The trends emerging from the atlas data comparisons were also related to the earlier study dealing with predictions of distributional changes for these species for the time slice of 2051–2080, developed using bioclimatic envelope models (BEMs). Our results suggest that the observed changes in bird distributions are in the same direction as the BEM-based predictions, resulting in a decrease in species richness of mire and Arctic mountain heath species and an increase in marshland species. The patterns of changes in species richness between the two time slices are in general parallel in protected and unprotected areas. However, importantly, protected areas maintained a higher level of species richness than unprotected areas. This finding provides support for the significance and resilience provision of protected area networks in preserving species of conservation concern under climate change.

Collaboration


Dive into the Juha Pöyry's collaboration.

Top Co-Authors

Avatar

Mikko Kuussaari

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miska Luoto

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Niko Leikola

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Raimo Virkkala

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Erik Öckinger

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Janne Heliölä

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Riccardo Bommarco

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Reima Leinonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Saija Kuusela

Finnish Environment Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge