Juha T. Huiskonen
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juha T. Huiskonen.
Journal of Virology | 2010
Juha T. Huiskonen; Jussi Hepojoki; Pasi Laurinmäki; Antti Vaheri; Hilkka Lankinen; Sarah J. Butcher; Kay Grünewald
ABSTRACT Hantaviruses (family Bunyaviridae) are rodent-borne emerging viruses that cause a serious, worldwide threat to human health. Hantavirus diseases include hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. Virions are enveloped and contain a tripartite single-stranded negative-sense RNA genome. Two types of glycoproteins, GN and GC, are embedded in the viral membrane and form protrusions, or “spikes.” The membrane encloses a ribonucleoprotein core, which consists of the RNA segments, the nucleocapsid protein, and the RNA-dependent RNA polymerase. Detailed information on hantavirus virion structure and glycoprotein spike composition is scarce. Here, we have studied the structures of Tula hantavirus virions using electron cryomicroscopy and tomography. Three-dimensional density maps show how the hantavirus surface glycoproteins, membrane, and ribonucleoprotein are organized. The structure of the GN-GC spike complex was solved to 3.6-nm resolution by averaging tomographic subvolumes. Each spike complex is a square-shaped assembly with 4-fold symmetry. Spike complexes formed ordered patches on the viral membrane by means of specific lateral interactions. These interactions may be sufficient for creating membrane curvature during virus budding. In conclusion, the structure and assembly principles of Tula hantavirus exemplify a unique assembly paradigm for enveloped viruses.
Journal of Virology | 2009
Juha T. Huiskonen; Anna K. Överby; Friedemann Weber; Kay Grünewald
ABSTRACT Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It is a mosquito-borne zoonotic agent that can cause hemorrhagic fever in humans. The enveloped RVFV virions are known to be covered by capsomers of the glycoproteins GN and GC, organized on a T=12 icosahedral lattice. However, the structural units forming the RVFV capsomers have not been determined. Conflicting biochemical results for another phlebovirus (Uukuniemi virus) have indicated the existence of either GN and GC homodimers or GN-GC heterodimers in virions. Here, we have studied the structure of RVFV using electron cryo-microscopy combined with three-dimensional reconstruction and single-particle averaging. The reconstruction at 2.2-nm resolution revealed the organization of the glycoprotein shell, the lipid bilayer, and a layer of ribonucleoprotein (RNP). Five- and six-coordinated capsomers are formed by the same basic structural unit. Molecular-mass measurements suggest a GN-GC heterodimer as the most likely candidate for this structural unit. Both leaflets of the lipid bilayer were discernible, and the glycoprotein transmembrane densities were seen to modulate the curvature of the lipid bilayer. RNP densities were situated directly underneath the transmembrane densities, suggesting an interaction between the glycoprotein cytoplasmic tails and the RNPs. The success of the single-particle averaging approach taken in this study suggests that it is applicable in the study of other phleboviruses, as well, enabling higher-resolution description of these medically important pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Anna K. Överby; Ralf F. Pettersson; Kay Grünewald; Juha T. Huiskonen
Bunyaviridae is a large family of viruses that have gained attention as “emerging viruses” because many members cause serious disease in humans, with an increasing number of outbreaks. These negative-strand RNA viruses possess a membrane envelope covered by glycoproteins. The virions are pleiomorphic and thus have not been amenable to structural characterization using common techniques that involve averaging of electron microscopic images. Here, we determined the three-dimensional structure of a member of the Bunyaviridae family by using electron cryotomography. The genome, incorporated as a complex with the nucleoprotein inside the virions, was seen as a thread-like structure partially interacting with the viral membrane. Although no ordered nucleocapsid was observed, lateral interactions between the two membrane glycoproteins determine the structure of the viral particles. In the most regular particles, the glycoprotein protrusions, or “spikes,” were seen to be arranged on an icosahedral lattice, with T = 12 triangulation. This arrangement has not yet been proven for a virus. Two distinctly different spike conformations were observed, which were shown to depend on pH. This finding is reminiscent of the fusion proteins of alpha-, flavi-, and influenza viruses, in which conformational changes occur in the low pH of the endosome to facilitate fusion of the viral and host membrane during viral entry.
Virology | 2009
Matthias Habjan; Nicola Penski; Valentina Wagner; Martin Spiegel; Anna K. Överby; Georg Kochs; Juha T. Huiskonen; Friedemann Weber
Rift Valley fever virus (RVFV) is a highly pathogenic member of the family Bunyaviridae that needs to be handled under biosafety level (BSL) 3 conditions. Here, we describe reverse genetics systems to measure RVFV polymerase activity in mammalian cells and to generate virus-like particles (VLPs). Recombinant polymerase (L) and nucleocapsid protein (N), expressed together with a minireplicon RNA, formed transcriptionally active nucleocapsids. These could be packaged into VLPs by additional expression of viral glycoproteins. The VLPs resembled authentic virus particles and were able to infect new cells. After infection, VLP-associated nucleocapsids autonomously performed primary transcription, and co-expression of L and N in VLP-infected cells allowed subsequent replication and secondary transcription. Bunyaviruses are potently inhibited by a human interferon-induced protein, MxA. However, the affected step in the infection cycle is not entirely characterized. Using the VLP system, we demonstrate that MxA inhibits both primary and secondary transcriptions of RVFV. A set of infection assays distinguishing between virus attachment, entry, and subsequent RNA synthesis confirmed that MxA is able to target immediate early RNA synthesis of incoming RVFV particles. Thus, our reverse genetics systems are useful for dissecting individual steps of RVFV infection under non-BSL3 conditions.
Nature Structural & Molecular Biology | 2002
Carmen San Martín; Juha T. Huiskonen; Jaana K. H. Bamford; Sarah J. Butcher; Stephen D. Fuller; Dennis H. Bamford; Roger M. Burnett
Bacteriophage PRD1 shares many structural and functional similarities with adenovirus. A major difference is the PRD1 internal membrane, which acts in concert with vertex proteins to translocate the phage genome into the host. Multiresolution models of the PRD1 capsid, together with genetic analyses, provide fine details of the molecular interactions associated with particle stability and membrane dynamics. The N- and C-termini of the major coat protein (P3), which are required for capsid assembly, act as conformational switches bridging capsid to membrane and linking P3 trimers. Electrostatic P3–membrane interactions increase virion stability upon DNA packaging. Newly revealed proteins suggest how the metastable vertex works and how the capsid edges are stabilized.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Lassi Liljeroos; Juha T. Huiskonen; Ari Ora; Petri Susi; Sarah J. Butcher
Measles virus is a highly infectious, enveloped, pleomorphic virus. We combined electron cryotomography with subvolume averaging and immunosorbent electron microscopy to characterize the 3D ultrastructure of the virion. We show that the matrix protein forms helices coating the helical ribonucleocapsid rather than coating the inner leaflet of the membrane, as previously thought. The ribonucleocapsid is folded into tight bundles through matrix–matrix interactions. The implications for virus assembly are that the matrix already tightly interacts with the ribonucleocapsid in the cytoplasm, providing a structural basis for the previously observed regulation of RNA transcription by the matrix protein. Next, the matrix-covered ribonucleocapsids are transported to the plasma membrane, where the matrix interacts with the envelope glycoproteins during budding. These results are relevant to the nucleocapsid organization and budding of other paramyxoviruses, where isolated matrix has been observed to form helices.
Journal of Cell Biology | 2011
Lena Karotki; Juha T. Huiskonen; Christopher J. Stefan; Natasza E. Ziółkowska; Robyn Roth; Michal A. Surma; Nevan J. Krogan; Scott D. Emr; John E. Heuser; Kay Grünewald; Tobias C. Walther
Membrane organization by eisosomes is mediated by self-assembly of its main components into a membrane-bound protein scaffold with lipid-binding specificity.
Nature Structural & Molecular Biology | 2004
Juha T. Huiskonen; Hanna M. Kivelä; Dennis H. Bamford; Sarah J. Butcher
Biological membranes are notoriously resistant to structural analysis. Excellent candidates to tackle this problem in situ are membrane-containing viruses where the membrane is constrained by an icosahedral capsid. Cryo-EM and image reconstruction of bacteriophage PM2 revealed a membrane bilayer following the internal surface of the capsid. The viral genome closely interacts with the inner leaflet. The capsid, at a resolution of 8.4 Å, reveals 200 trimeric capsomers with a pseudo T = 21 dextro organization. Pentameric receptor-binding spikes protrude from the surface. It is evident from the structure that the PM2 membrane has at least two important roles in the life cycle. First, it acts as a scaffold to nucleate capsid assembly. Second, after host recognition, it fuses with the host outer membrane to promote genome entry. The structure also sheds light on how the viral supercoiled circular double-stranded DNA genome might be packaged and released.
Nature Structural & Molecular Biology | 2011
Natasza E. Ziółkowska; Lena Karotki; Michael Rehman; Juha T. Huiskonen; Tobias C. Walther
Plasma membranes are organized into domains of different protein and lipid composition. Eisosomes are key complexes for yeast plasma membrane organization, containing primarily Pil1 and Lsp1. Here we show that both proteins consist mostly of a banana-shaped BAR domain common to membrane sculpting proteins, most similar to the ones of amphiphysin, arfaptin 2 and endophilin 2. Our data reveal a previously unrecognized family of BAR-domain proteins involved in plasma membrane organization.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ashley York; Narin Hengrung; Frank T. Vreede; Juha T. Huiskonen; Ervin Fodor
Significance The negative-strand RNA viruses comprise several significant human, animal, and plant pathogens that have considerable health and economic impact globally. During infection, replication of the single-stranded negative-sense RNA genome occurs through a complementary RNA intermediate, which is believed to complex with viral proteins to form a complementary ribonucleoprotein (cRNP). The isolation of these complexes from infected cells has never been accomplished, greatly hampering our understanding of genome replication. We report a technological advance for the isolation of this elusive but essential component of the influenza A virus replication machine. Structural and functional characterization of the influenza A virus cRNP has led to the proposal of a model of genome replication that relies on a trans-activating viral RNA-dependent RNA polymerase. Negative-strand RNA viruses represent a significant class of important pathogens that cause substantial morbidity and mortality in human and animal hosts worldwide. A defining feature of these viruses is that their single-stranded RNA genomes are of opposite polarity to messenger RNA and are replicated through a positive-sense intermediate. The replicative intermediate is thought to exist as a complementary ribonucleoprotein (cRNP) complex. However, isolation of such complexes from infected cells has never been accomplished. Here we report the development of an RNA-based affinity-purification strategy for the isolation of cRNPs of influenza A virus from infected cells. This technological advance enabled the structural and functional characterization of this elusive but essential component of the viral RNA replication machine. The cRNP exhibits a filamentous double-helical organization with defined termini, containing the viral RNA-dependent RNA polymerase (RdRp) at one end and a loop structure at the other end. In vitro characterization of cRNP activity yielded mechanistic insights into the workings of this RNA synthesis machine. In particular, we found that cRNPs show activity in vitro only in the presence of added RdRp. Intriguingly, a replication-inactive RdRp mutant was also able to activate cRNP-templated viral RNA synthesis. We propose a model of influenza virus genome replication that relies on the trans-activation of the cRNP-associated RdRp. The described purification strategy should be applicable to other negative-strand RNA viruses and will promote studies into their replication mechanisms.