Juhani Aakko
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juhani Aakko.
Scientific Reports | 2016
Maria Carmen Collado; Samuli Rautava; Juhani Aakko; Erika Isolauri; Seppo Salminen
Interaction with intestinal microbes in infancy has a profound impact on health and disease in later life through programming of immune and metabolic pathways. We collected maternal faeces, placenta, amniotic fluid, colostrum, meconium and infant faeces samples from 15 mother-infant pairs in an effort to rigorously investigate prenatal and neonatal microbial transfer and gut colonisation. To ensure sterile sampling, only deliveries at full term by elective caesarean section were studied. Microbiota composition and activity assessment by conventional bacterial culture, 16S rRNA gene pyrosequencing, quantitative PCR, and denaturing gradient gel electrophoresis revealed that the placenta and amniotic fluid harbour a distinct microbiota characterised by low richness, low diversity and the predominance of Proteobacteria. Shared features between the microbiota detected in the placenta and amniotic fluid and in infant meconium suggest microbial transfer at the foeto-maternal interface. At the age of 3–4 days, the infant gut microbiota composition begins to resemble that detected in colostrum. Based on these data, we propose that the stepwise microbial gut colonisation process may be initiated already prenatally by a distinct microbiota in the placenta and amniotic fluid. The link between the mother and the offspring is continued after birth by microbes present in breast milk.
Age | 2012
Sampo J. Lahtinen; Sofia D. Forssten; Juhani Aakko; Linda Granlund; Nina Rautonen; Seppo Salminen; Matti Viitanen; Arthur C. Ouwehand
Aging is associated with alterations in the intestinal microbiota and with immunosenescence. Probiotics have the potential to modify a selected part of the intestinal microbiota as well as improve immune functions and may, therefore, be particularly beneficial to elderly consumers. In this randomized, controlled cross-over clinical trial, we assessed the effects of a probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM on the intestinal microbiota and fecal immune markers of 31 elderly volunteers and compared these effects with the administration of the same cheese without probiotics. The probiotic cheese was found to increase the number of L. rhamnosus and L. acidophilus NCFM in the feces, suggesting the survival of the strains during the gastrointestinal transit. Importantly, probiotic cheese administration was associated with a trend towards lower counts of Clostridium difficile in the elderly, as compared with the run-in period with the plain cheese. The effect was statistically significant in the subpopulation of the elderly who harbored C. difficile at the start of the study. The probiotic cheese was not found to significantly alter the levels of the major microbial groups, suggesting that the microbial changes conferred by the probiotic cheese were limited to specific bacterial groups. Despite that the administration of the probiotic cheese to the study population has earlier been shown to significantly improve the innate immunity of the elders, we did not observe measurable changes in the fecal immune IgA concentrations. No increase in fecal calprotectin and β-defensin concentrations suggests that the probiotic treatment did not affect intestinal inflammatory markers. In conclusion, the administration of probiotic cheese containing L. rhamnosus HN001 and L. acidophilus NCFM, was associated with specific changes in the intestinal microbiota, mainly affecting specific subpopulations of intestinal lactobacilli and C. difficile, but did not have significant effects on the major microbial groups or the fecal immune markers.
Frontiers in Microbiology | 2016
Himanshu Kumar; Elloise du Toit; Amruta Kulkarni; Juhani Aakko; Kaisa Linderborg; Yumei Zhang; Mark P. Nicol; Erika Isolauri; Baoru Yang; Maria Carmen Collado; Seppo Salminen
Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland), Africa (South Africa), and Asia (China), on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the 1 month of lactation. Altogether, 80 women (20 from each country) participated in the study, with equal number of women who delivered by vaginal or cesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6%) observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p = 0.002). Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes (mean relative abundance of 3.75) whereas Chinese women had highest amount of Actinobacteria (mean relative abundance 5.7). Women who had had a cesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p < 0.05). Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids (MUFA) were negatively associated with Proteobacteria (r = -0.43, p < 0.05), while Lactobacillus genus was associated with MUFA (r = -0.23, p = 0.04). These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.
Beneficial Microbes | 2017
Juhani Aakko; Himanshu Kumar; Samuli Rautava; A. Wise; C. Autran; L. Bode; Erika Isolauri; Seppo Salminen
Human milk oligosaccharides (HMOs) are structurally diverse unconjugated glycans with a composition unique to each lactating mother. While HMOs have been shown to have an impact on the development of infant gut microbiota, it is not well known if HMOs also already affect milk microbial composition. To address this question, we analysed eleven colostrum samples for HMO content by high-pressure liquid chromatography and microbiota composition by quantitative PCR. Higher total HMO concentration was associated with higher counts of Bifidobacterium spp. (ρ=0.63, P=0.036). A distinctive effect was seen when comparing different HMO groups: positive correlations were observed between sialylated HMOs and Bifidobacterium breve (ρ=0.84, P=0.001), and non-fucosylated/non-sialylated HMOs and Bifidobacterium longum group (ρ=0.65, P=0.030). In addition to associations between HMOs and bifidobacteria, positive correlations were observed between fucosylated HMOs and Akkermansia muciniphila (ρ=0.70, P=0.017), and between fucosylated/sialylated HMOs and Staphylococcus aureus (ρ=0.75, P=0.007). Our results suggest that the characterised HMOs have an effect on specific microbial groups in human milk. Both oligosaccharides and microbes provide a concise inoculum for the compositional development of the infant gut microbiota.
Journal of Applied Microbiology | 2014
Juhani Aakko; B. Sánchez; Miguel Gueimonde; Seppo Salminen
The purpose of this study was to investigate the heat‐shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB‐12 and their heat‐tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress.
Journal of Pediatric Gastroenterology and Nutrition | 2015
Juhani Aakko; Akihito Endo; Charles Mangani; Kenneth Maleta; Per Ashorn; Erika Isolauri; Seppo Salminen
Objective: Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. Methods: The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Results: Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Conclusions: Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.
Archive | 2019
Sami Pietilä; Tomi Suomi; Juhani Aakko; Laura L. Elo
Data-independent acquisition (DIA) mode of mass spectrometry, such as the SWATH-MS technology, enables accurate and consistent measurement of proteins, which is crucial for comparative proteomics studies. However, there is lack of free and easy to implement data analysis protocols that can handle the different data processing steps from raw spectrum files to peptide intensity matrix and its downstream analysis. Here, we provide a data analysis protocol, named diatools, covering all these steps from spectral library building to differential expression analysis of DIA proteomics data. The data analysis tools used in this protocol are open source and the protocol is distributed at Docker Hub as a complete software environment that supports Linux, Windows, and macOS operating systems.
bioRxiv | 2018
Juhani Aakko; Sami Pietilä; Tomi Suomi; Mehrad Mahmoudian; Raine Toivonen; Petri Kouvonen; Anne Rokka; Arno Hänninen; Laura L. Elo
Metaproteomics is an emerging research area which aims to reveal the functionality of microbial communities – unlike the increasingly popular metagenomics providing insights only on the functional potential. So far, the common approach in metaproteomics has been data-dependent acquisition mass spectrometry (DDA). However, DDA is known to have limited reproducibility and dynamic range with samples of complex microbial composition. To overcome these limitations, we introduce here a novel approach utilizing data-independent acquisition (DIA) mass spectrometry, which has not been applied in metaproteomics of complex samples before. For robust analysis of the data, we introduce an open-source software package diatools, which is freely available at Docker Hub and runs on various operating systems. Our highly reproducible results on laboratory-assembled microbial mixtures and human fecal samples support the utility of our approach for functional characterization of complex microbiota. Hence, the approach is expected to dramatically improve our understanding on the role of microbiota in health and disease.
Journal of Pediatric Gastroenterology and Nutrition | 2017
Juhani Aakko; Łukasz Grześkowiak; Tiia Asukas; Eerika Päivänsäde; Kirsi-maarit Lehto; Yue-Mei Fan; Charles Mangani; Kenneth Maleta; Per Ashorn; Seppo Salminen
Objectives: The aim of the study was to assess the effect of nutritional supplementation with lipid-based nutrient supplements (LNS) and corn-soy blend flour on Bifidobacterium and Staphylococcus aureus gut microbiota composition in Malawian infants. In addition, the microbiota changes over time were characterized in the study infants. Methods: Healthy 6-month-old Malawian infants were randomly assigned to 1 of 4 intervention schemes for a 6-month period. Infants in the control group were not provided with any supplementary food. Infants in other 3 groups received either micronutrient-fortified corn-soy blend, micronutrient-fortified LNS with milk protein base, or micronutrient-fortified LNS with soy protein base between 6 and 12 months of age. Fecal bifidobacteria and S aureus gut microbiota at 6 and 12 months of age were analyzed by quantitative real-time polymerase chain reaction method. Results: There was no difference in change in bacterial prevalence or counts between the intervention groups during the 6-month study period. When looking at the total study population, higher counts of total bacteria (P = 0.028), Bifidobacterium genus (P = 0.027), B catenulatum (P = 0.031), and lower counts of B infantis (P < 0.001), B lactis (P < 0.001), B longum (P < 0.001), and S aureus (P < 0.001) were detected in the childrens stools at 12 months rather than at 6 months of age. Conclusions: The dietary supplementation did not have an effect on the Bifidobacterium and S aureus microbiota composition of the study infants. The fecal bifidobacterial diversity of the infants, however, changed toward a more adult-like microbiota profile within the observed time.
Fems Microbiology Letters | 2012
Akihito Endo; Juhani Aakko; Seppo Salminen