Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomi Suomi is active.

Publication


Featured researches published by Tomi Suomi.


Briefings in Bioinformatics | 2016

A systematic evaluation of normalization methods in quantitative label-free proteomics

Tommi Välikangas; Tomi Suomi; Laura L. Elo

Abstract To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization method is a pivotal task for the reliability of the downstream analysis and results. Many normalization methods commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study, several popular and widely used normalization methods representing different strategies in normalization are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The normalization methods are evaluated in terms of their ability to reduce variation between technical replicates, their effect on differential expression analysis and their effect on the estimation of logarithmic fold changes. Additionally, we examined whether normalizing the whole data globally or in segments for the differential expression analysis has an effect on the performance of the normalization methods. We found that variance stabilization normalization (Vsn) reduced variation the most between technical replicates in all examined data sets. Vsn also performed consistently well in the differential expression analysis. Linear regression normalization and local regression normalization performed also systematically well. Finally, we discuss the choice of a normalization method and some qualities of a suitable normalization method in the light of the results of our evaluation.


Journal of Proteome Research | 2015

Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins

Tomi Suomi; Garry L. Corthals; Olli S. Nevalainen; Laura L. Elo

The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.


ACS Chemical Neuroscience | 2016

Brief Isoflurane Anesthesia Produces Prominent Phosphoproteomic Changes in the Adult Mouse Hippocampus

Samuel Kohtala; Wiebke Theilmann; Tomi Suomi; Henna-Kaisa Wigren; Tarja Porkka-Heiskanen; Laura L. Elo; Anne Rokka; Tomi Rantamäki

Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins-implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function-as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3β (GSK3β) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3β and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3β, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.


PLOS Computational Biology | 2017

ROTS: An R package for reproducibility-optimized statistical testing

Tomi Suomi; Fatemeh Seyednasrollah; Maria K. Jaakkola; Thomas Faux; Laura L. Elo

Differential expression analysis is one of the most common types of analyses performed on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process that detects features, such as genes or proteins, showing statistically significant differences between the sample groups under comparison. A major challenge in the analysis is the choice of an appropriate test statistic, as different statistics have been shown to perform well in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties of the data and provides a ranking of the features based on their statistical evidence for differential expression between two groups. ROTS has already been successfully applied in a range of different studies from transcriptomics to proteomics, showing competitive performance against other state-of-the-art methods. To promote its widespread use, we introduce here a Bioconductor R package for performing ROTS analysis conveniently on different types of omics data. To illustrate the benefits of ROTS in various applications, we present three case studies, involving proteomics and RNA-seq data from public repositories, including both bulk and single cell data. The package is freely available from Bioconductor (https://www.bioconductor.org/packages/ROTS).


Journal of Proteome Research | 2014

Cross-Correlation of Spectral Count Ranking to Validate Quantitative Proteome Measurements

Olli Kannaste; Tomi Suomi; Jussi Salmi; Esa Uusipaikka; Olli S. Nevalainen; Garry L. Corthals

The measurement of change in biological systems through protein quantification is a central theme in modern biosciences and medicine. Label-free MS-based methods have greatly increased the ease and throughput in performing this task. Spectral counting is one such method that uses detected MS2 peptide fragmentation ions as a measure of the protein amount. The method is straightforward to use and has gained widespread interest. Additionally reports on new statistical methods for analyzing spectral count data appear at regular intervals, but a systematic evaluation of these is rarely seen. In this work, we studied how similar the results are from different spectral count data analysis methods, given the same biological input data. For this, we chose the algorithms Beta Binomial, PLGEM, QSpec, and PepC to analyze three biological data sets of varying complexity. For analyzing the capability of the methods to detect differences in protein abundance, we also performed controlled experiments by spiking a mixture of 48 human proteins in varying concentrations into a yeast protein digest to mimic biological fold changes. In general, the agreement of the analysis methods was not particularly good on the proteome-wide scale, as considerable differences were found between the different algorithms. However, we observed good agreements between the methods for the top abundance changed proteins, indicating that for a smaller fraction of the proteome changes are measurable, and the methods may be used as valuable tools in the discovery-validation pipeline when applying a cross-validation approach as described here. Performance ranking of the algorithms using samples of known composition showed PLGEM to be superior, followed by Beta Binomial, PepC, and QSpec. Similarly, the normalized versions of the same method, when available, generally outperformed the standard ones. Statistical detection of protein abundance differences was strongly influenced by the number of spectra acquired for the protein and, correspondingly, its molecular mass.


Briefings in Bioinformatics | 2017

A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation

Tommi Välikangas; Tomi Suomi; Laura L. Elo

Abstract Label-free mass spectrometry (MS) has developed into an important tool applied in various fields of biological and life sciences. Several software exist to process the raw MS data into quantified protein abundances, including open source and commercial solutions. Each software includes a set of unique algorithms for different tasks of the MS data processing workflow. While many of these algorithms have been compared separately, a thorough and systematic evaluation of their overall performance is missing. Moreover, systematic information is lacking about the amount of missing values produced by the different proteomics software and the capabilities of different data imputation methods to account for them. In this study, we evaluated the performance of five popular quantitative label-free proteomics software workflows using four different spike-in data sets. Our extensive testing included the number of proteins quantified and the number of missing values produced by each workflow, the accuracy of detecting differential expression and logarithmic fold change and the effect of different imputation and filtering methods on the differential expression results. We found that the Progenesis software performed consistently well in the differential expression analysis and produced few missing values. The missing values produced by the other software decreased their performance, but this difference could be mitigated using proper data filtering or imputation methods. Among the imputation methods, we found that the local least squares (lls) regression imputation consistently increased the performance of the software in the differential expression analysis, and a combination of both data filtering and local least squares imputation increased performance the most in the tested data sets.


Scientific Reports | 2017

Enhanced differential expression statistics for data-independent acquisition proteomics

Tomi Suomi; Laura L. Elo

We describe a new reproducibility-optimization method ROPECA for statistical analysis of proteomics data with a specific focus on the emerging data-independent acquisition (DIA) mass spectrometry technology. ROPECA optimizes the reproducibility of statistical testing on peptide-level and aggregates the peptide-level changes to determine differential protein-level expression. Using a ‘gold standard’ spike-in data and a hybrid proteome benchmark data we show the competitive performance of ROPECA over conventional protein-based analysis as well as state-of-the-art peptide-based tools especially in DIA data with consistent peptide measurements. Furthermore, we also demonstrate the improved accuracy of our method in clinical studies using proteomics data from a longitudinal human twin study.


Archive | 2019

A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics

Sami Pietilä; Tomi Suomi; Juhani Aakko; Laura L. Elo

Data-independent acquisition (DIA) mode of mass spectrometry, such as the SWATH-MS technology, enables accurate and consistent measurement of proteins, which is crucial for comparative proteomics studies. However, there is lack of free and easy to implement data analysis protocols that can handle the different data processing steps from raw spectrum files to peptide intensity matrix and its downstream analysis. Here, we provide a data analysis protocol, named diatools, covering all these steps from spectral library building to differential expression analysis of DIA proteomics data. The data analysis tools used in this protocol are open source and the protocol is distributed at Docker Hub as a complete software environment that supports Linux, Windows, and macOS operating systems.


bioRxiv | 2018

Data-independent acquisition mass spectrometry enables reproducible characterization of microbiota function

Juhani Aakko; Sami Pietilä; Tomi Suomi; Mehrad Mahmoudian; Raine Toivonen; Petri Kouvonen; Anne Rokka; Arno Hänninen; Laura L. Elo

Metaproteomics is an emerging research area which aims to reveal the functionality of microbial communities – unlike the increasingly popular metagenomics providing insights only on the functional potential. So far, the common approach in metaproteomics has been data-dependent acquisition mass spectrometry (DDA). However, DDA is known to have limited reproducibility and dynamic range with samples of complex microbial composition. To overcome these limitations, we introduce here a novel approach utilizing data-independent acquisition (DIA) mass spectrometry, which has not been applied in metaproteomics of complex samples before. For robust analysis of the data, we introduce an open-source software package diatools, which is freely available at Docker Hub and runs on various operating systems. Our highly reproducible results on laboratory-assembled microbial mixtures and human fecal samples support the utility of our approach for functional characterization of complex microbiota. Hence, the approach is expected to dramatically improve our understanding on the role of microbiota in health and disease.


Bioinformatics | 2018

SimPhospho: a software tool enabling confident phosphosite assignment

Veronika Suni; Tomi Suomi; Tomoya Tsubosaka; Susumu Y. Imanishi; Laura L. Elo; Garry L. Corthals

Motivation: Mass spectrometry combined with enrichment strategies for phosphorylated peptides has been successfully employed for two decades to identify sites of phosphorylation. However, unambiguous phosphosite assignment is considered challenging. Given that site‐specific phosphorylation events function as different molecular switches, validation of phosphorylation sites is of utmost importance. In our earlier study we developed a method based on simulated phosphopeptide spectral libraries, which enables highly sensitive and accurate phosphosite assignments. To promote more widespread use of this method, we here introduce a software implementation with improved usability and performance. Results: We present SimPhospho, a fast and user‐friendly tool for accurate simulation of phosphopeptide tandem mass spectra. Simulated phosphopeptide spectral libraries are used to validate and supplement database search results, with a goal to improve reliable phosphoproteome identification and reporting. The presented program can be easily used together with the Trans‐Proteomic Pipeline and integrated in a phosphoproteomics data analysis workflow. Availability and implementation: SimPhospho is open source and it is available for Windows, Linux and Mac operating systems. The software and its users manual with detailed description of data analysis as well as test data can be found at https://sourceforge.net/projects/simphospho/. Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Tomi Suomi's collaboration.

Top Co-Authors

Avatar

Laura L. Elo

Åbo Akademi University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Rokka

Åbo Akademi University

View shared research outputs
Top Co-Authors

Avatar

Olli S. Nevalainen

Information Technology University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge