Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia C. Kenyon is active.

Publication


Featured researches published by Julia C. Kenyon.


PLOS Pathogens | 2008

Structure and function of A41, a vaccinia virus chemokine binding protein.

Mohammad W. Bahar; Julia C. Kenyon; Mike M. Pütz; Nicola G. A. Abrescia; James E. Pease; Emma L. Wise; David I. Stuart; Geoffrey L. Smith; Jonathan M. Grimes

The vaccinia virus (VACV) A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI), and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 Å resolution. The protein has a globular β sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI–chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM) interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (μM–nM) and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM) chemokine–chemokine receptor interactions.


Structure | 2013

Three-Dimensional RNA Structure of the Major HIV-1 Packaging Signal Region

James Stephenson; Haitao Li; Julia C. Kenyon; Martyn F. Symmons; Dave Klenerman; Andrew M. L. Lever

Summary HIV-1 genomic RNA has a noncoding 5′ region containing sequential conserved structural motifs that control many parts of the life cycle. Very limited data exist on their three-dimensional (3D) conformation and, hence, how they work structurally. To assemble a working model, we experimentally reassessed secondary structure elements of a 240-nt region and used single-molecule distances, derived from fluorescence resonance energy transfer, between defined locations in these elements as restraints to drive folding of the secondary structure into a 3D model with an estimated resolution below 10 Å. The folded 3D model satisfying the data is consensual with short nuclear-magnetic-resonance-solved regions and reveals previously unpredicted motifs, offering insight into earlier functional assays. It is a 3D representation of this entire region, with implications for RNA dimerization and protein binding during regulatory steps. The structural information of this highly conserved region of the virus has the potential to reveal promising therapeutic targets.


Nucleic Acids Research | 2013

In-gel probing of individual RNA conformers within a mixed population reveals a dimerization structural switch in the HIV-1 leader

Julia C. Kenyon; Liam Prestwood; Stuart F. J. Le Grice; Andrew M. L. Lever

Definitive secondary structural mapping of RNAs in vitro can be complicated by the presence of more than one structural conformer or multimerization of some of the molecules. Until now, probing a single structure of conformationally flexible RNA molecules has typically relied on introducing stabilizing mutations or adjusting buffer conditions or RNA concentration. Here, we present an in-gel SHAPE (selective 2′OH acylation analysed by primer extension) approach, where a mixed structural population of RNA molecules is separated by non-denaturing gel electrophoresis and the conformers are individually probed within the gel matrix. Validation of the technique using a well-characterized RNA stem-loop structure, the HIV-1 trans-activation response element, showed that authentic structure was maintained and that the method was accurate and highly reproducible. To further demonstrate the utility of in-gel SHAPE, we separated and examined monomeric and dimeric species of the HIV-1 packaging signal RNA. Extensive differences in acylation sensitivity were seen between monomer and dimer. The results support a recently proposed structural switch model of RNA genomic dimerization and packaging, and demonstrate the discriminatory power of in-gel SHAPE.


Nucleic Acids Research | 2011

SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

Julia C. Kenyon; Sian J. Tanner; Michal Legiewicz; Pretty Susan Phillip; Tahir A. Rizvi; Stuart F. J. Le Grice; Andrew M. L. Lever

Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem–loops, extensive long-range interactions (LRIs) and a small, palindromic stem–loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem–loops are static structures, the 5′ and 3′ regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem–loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.


Viruses | 2011

The Molecular Biology of Feline Immunodeficiency Virus (FIV)

Julia C. Kenyon; Andrew M. L. Lever

Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.


Journal of Molecular Biology | 2010

Optimal Packaging of FIV Genomic RNA Depends upon a Conserved Long-range Interaction and a Palindromic Sequence within gag

Tahir A. Rizvi; Julia C. Kenyon; Jahabar Ali; Suriya J. Aktar; Pretty Susan Phillip; Akela Ghazawi; Farah Mustafa; Andrew M. L. Lever

The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5′ 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5′ and 3′ sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem–loop (SL2) and a small palindromic stem–loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8–5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5–3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.


Scientific Reports | 2015

A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader.

Julia C. Kenyon; Liam Prestwood; Andrew Michael Lever

RNA-protein interactions govern many viral and host cell processes. Conventional ‘footprinting’ to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2′ hydroxyl reactivity (‘SHAPE’) that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex. ‘XL-SHAPE’ was validated using well-characterized viral RNA-protein interactions: HIV-1 Tat/TAR and bacteriophage MS2 RNA/Coat Binding Protein. It was then used to map HIV-1 Gag protein interactions on 2D and 3D models of the viral RNA leader. Distinct Gag binding sites were identified on exposed RNA surfaces corresponding to regions identified by mutagenesis as important for genome packaging. This widely applicable technique has revealed a first view of the stoichiometry and structure of the initial complex formed when HIV captures its genome.


Methods | 2016

Characterizing 3D RNA structure by single molecule FRET.

James D. Stephenson; Julia C. Kenyon; Martyn F. Symmons; Andrew Michael Lever

The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.


British Medical Bulletin | 2011

XMRV, prostate cancer and chronic fatigue syndrome

Julia C. Kenyon; Andrew M. L. Lever

BACKGROUND A new retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), was identified in 2006 and an association was claimed between it and a genetic polymorphism predisposing to cancer of the prostate. In 2009 the same virus was identified in a cohort of patients with chronic fatigue syndrome (CFS). In 2010 a second related virus was identified in a separate group of CFS patients. A series of studies from disparate geographical areas have failed to substantiate this work. Most recently several papers have suggested that the detection of these viruses was explained by laboratory contamination. SOURCES OF DATA All papers including the wording XMRV were abstracted from the NIH library of medicine database and included in the analysis. AREAS OF AGREEMENT XMRV is a newly described retrovirus whose nucleic acid has been identified in samples from patients with both prostate cancer and CFS. AREAS OF CONTROVERSY Opinions differ as to whether the detected nucleic acid indicates infection with this virus in this disease or whether laboratory contamination of samples accounts for its presence. GROWING POINTS An increasing number of papers now refute the association of XMRV with human disease in humans although there is some evidence of serological reactivity to the virus. While it is unlikely that XMRV is a major cause of either prostate cancer or CFS, it can infect human cells and might yet have a role in human disease. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies to either prove or disprove the disease association of the virus are ongoing.


Biochemical Society Transactions | 2014

Current perspectives on RNA secondary structure probing

Julia C. Kenyon; Liam Prestwood; Andrew M. L. Lever

The range of roles played by structured RNAs in biological systems is vast. At the same time as we are learning more about the importance of RNA structure, recent advances in reagents, methods and technology mean that RNA secondary structural probing has become faster and more accurate. As a result, the capabilities of laboratories that already perform this type of structural analysis have increased greatly, and it has also become more widely accessible. The present review summarizes established and recently developed techniques. The information we can derive from secondary structural analysis is assessed, together with the areas in which we are likely to see exciting developments in the near future.

Collaboration


Dive into the Julia C. Kenyon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pretty Susan Phillip

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Tahir A. Rizvi

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil M. Bell

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akela Ghazawi

United Arab Emirates University

View shared research outputs
Researchain Logo
Decentralizing Knowledge