Julia Lu
Ryerson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Lu.
Environmental Research | 2009
Qi Wan; Xinbin Feng; Julia Lu; Wei Zheng; Xinjie Song; Shijie Han; Hao Xu
An intensive field campaign for the measurement of total gaseous mercury (TGM) concentrations in ambient air was conducted in Changbai Mountain area from 5 August 2005 to 5 July 2006 using an automatic atmospheric mercury analyzer (Tekran 2537A), which was the first time TGM was monitored at a remote area in northeastern China. 99% of the hourly TGM concentrations fell between 1.28 and 9.49ngm(-3) with an annual arithmetic mean of 3.58+/-1.78ngm(-3), which was significantly elevated compared to values obtained in remote areas of Europe and North America. Seasonal mean TGM concentrations displayed a descending trend as follows: winter, spring, fall, and summer. Compared to spring/winter, TGM concentrations were lower in the summer/fall but the standard deviation (SD) of TGM levels was higher and indicated a correlation with anthropogenic emissions. TGM concentrations showed seasonal differences with respect to meteorological parameters: TGM levels in spring/winter were most correlated with wind speed, and correlated with solar radiation only in the winter, while TGM levels in summer/fall periods were most correlated with air temperature. There was a strong diurnal variation of seasonal TGM with significantly higher concentrations in daytime/nighttime compared to the early morning. The seasonal diel TGM pattern indicated regional biofuel and coal combustion were the primary mercury sources.
Environmental Research | 2009
Qi Wan; Xinbin Feng; Julia Lu; Wei Zheng; Xinjie Song; Ping Li; Shijie Han; Hao Xu
Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.
Environmental Pollution | 2012
Leiming Zhang; Pierrette Blanchard; D. Johnson; Ashu Dastoor; A. Ryzhkov; Che-Jen Lin; K. Vijayaraghavan; Thomas M. Holsen; J. Huang; Jennifer A. Graydon; V. L. St. Louis; M.S. Castro; E.K. Miller; F. Marsik; Julia Lu; Laurier Poissant; Martin Pilote; K.M. Zhang
Three sets of model predicted values for speciated mercury concentrations and dry deposition fluxes over the Great Lakes region were assessed using field measurements and model intercomparisons. The model predicted values were produced by the Community Multiscale Air Quality Modeling System for the year 2002 (CMAQ2002) and for the year 2005 (CMAQ2005) and by the Global/Regional Atmospheric Heavy Metals Model for the year 2005 (GRAHM2005). Median values of the surface layer ambient concentration of gaseous elemental mercury (GEM) from all three models were generally within 30% of measurements. However, all three models overpredicted surface-layer concentrations of gaseous oxidized mercury (GOM) and particulate bound mercury (PBM) by a factor of 2-10 at the majority of the 15 monitoring locations. For dry deposition of GOM plus PBM, CMAQ2005 showed a clear gradient with the highest deposition in Pennsylvania and its surrounding areas while GRAHM2005 showed no such gradient in this region; however, GRAHM2005 had more hot spots than those of CMAQ2005. Predicted dry deposition of GOM plus PBM from these models should be treated as upper-end estimates over some land surfaces in this region based on the tendencies of all the models to overpredict GOM and PBM concentrations when compared to field measurements. Model predicted GEM dry deposition was found to be as important as GOM plus PBM dry deposition as a contributor to total dry deposition. Predicted total annual mercury dry deposition were mostly lower than 5 μg m(-2) to the surface of the Great lakes, between 5 and 15 μg m(-2) to the land surface north of the US/Canada border, and between 5 and 40 μg m(-2) to the land surface south of the US/Canada border. Predicted dry deposition from different models differed from each other by as much as a factor of 2 at regional scales and by a greater extent at local scales.
Environmental Pollution | 2011
Elaine Cairns; Kavitharan Tharumakulasingam; Makshoof Athar; Muhammad Yousaf; Irene Cheng; Y. Huang; Julia Lu; Dave Yap
Atmospheric gaseous elemental mercury [GEM] at 1.8, 4, and 59 m above ground, in parking lots, and in indoor and outdoor air was measured in Toronto City, Canada from May 2008-July 2009. The average GEM value at 1.8 m was 1.89 ± 0.62 ng m(-3). The GEM values increased with elevation. The average GEM in underground parking lots ranged from 1.37 to 7.86 ng m(-3) and was higher than those observed from the surface parking lots. The GEM in the indoor air ranged from 1.21 to 28.50 ng m(-3), was higher in the laboratories than in the offices, and was much higher than that in the outdoor air. All these indicate that buildings serve as sources of mercury to the urban atmosphere. More studies are needed to estimate the contribution of urban areas to the atmospheric mercury budget and the impact of indoor air on outdoor air quality and human health.
Atmospheric Environment | 2003
Hans R. Friedli; Lawrence F. Radke; Julia Lu; Cathy Banic; W.R. Leaitch; J.I. Macpherson
Atmospheric Environment | 2008
Xuewu Fu; Xinbin Feng; Wanze Zhu; Shaofeng Wang; Julia Lu
Environmental Pollution | 2011
Zongze Cao; Yuhua Yang; Julia Lu; Chengxiao Zhang
Environmental Pollution | 2008
Tianrong He; Xinbin Feng; Yanna Guo; Guangle Qiu; Zhonggen Li; Lian Liang; Julia Lu
Science of The Total Environment | 2007
Tianrong He; Julia Lu; Fan Yang; Xinbin Feng
Journal of Environmental Monitoring | 2009
Xinjie Song; Irene Cheng; Julia Lu