Julia Marschallinger
University of Salzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Marschallinger.
Nature Communications | 2015
Julia Marschallinger; Iris Schäffner; Barbara E. K. Klein; Renate Gelfert; Francisco J. Rivera; Sebastian Illes; Lukas Grassner; Maximilian Janssen; Peter Rotheneichner; Claudia Schmuckermair; Roland Coras; Marta Boccazzi; Mansoor Chishty; Florian B. Lagler; Marija Renic; Hans-Christian Bauer; Nicolas Singewald; Ingmar Blümcke; Ulrich Bogdahn; Sebastien Couillard-Despres; D. Chichung Lie; Maria P. Abbracchio; Ludwig Aigner
As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood–brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias.
Developmental Dynamics | 2007
Peter Steinbacher; John R. Haslett; Astrid Obermayer; Julia Marschallinger; Hans-Christian Bauer; Alexandra M. Sänger; Walter Stoiber
Muscle cell recruitment (hyperplasia) during myogenesis in the vertebrate embryo is known to occur in three consecutive phases. In teleost fish (including zebrafish), however, information on myogenic precursor cell activation is largely fragmentary, and comprehensive characterization of the myogenic phases has only been fully undertaken in a single slow‐growing cyprinid species by examination of MEF2D expression. Here, we use molecular techniques to provide a comprehensive characterization of MyoD and Myogenin expression during myogenic cell activation in embryos and larvae of brown trout, a fast‐growing salmonid with exceptionally large embryos. Results confirm the three‐phase pattern, but also demonstrate that the second and third phases begin simultaneously and progress vigorously, which is different from the previously described consecutive activation of these phases. Furthermore, we suggest that Pax7 is expressed in myogenic progenitor cells that account for second‐ and third‐phase myogenesis. These findings are discussed in relation to teleost myotome development and to teleost growth strategies. Developmental Dynamics 236:1106–1114, 2007.
Neural Plasticity | 2014
Peter Rotheneichner; Simona Lange; Anna O'Sullivan; Julia Marschallinger; Pia Zaunmair; Christian Geretsegger; Ludwig Aigner; Sebastien Couillard-Despres
Speculations on the involvement of hippocampal neurogenesis, a form of neuronal plasticity, in the aetiology of depression and the mode of action of antidepressive therapies, started to arise more than a decade ago. But still, conclusive evidence that adult neurogenesis contributes to antidepressive effects of pharmacological and physical therapies has not been generated yet. This review revisits recent findings on the close relation between the mode(s) of action of electroconvulsive therapy (ECT), a powerful intervention used as second-line treatment of major depression disorders, and the neurogenic response to ECT. Following application of electroconvulsive shocks, intricate interactions between neurogenesis, angiogenesis, and microglia activation, the hypothalamic-pituitary-adrenal axis and the secretion of neurotrophic factors have been documented. Furthermore, considering the fact that neurogenesis strongly diminishes along aging, we investigated the response to electroconvulsive shocks in young as well as in aged cohorts of mice.
Journal of Cellular and Molecular Medicine | 2014
Mahesh Kandasamy; Bernadette Lehner; Sabrina Kraus; Paul Ramm Sander; Julia Marschallinger; Francisco J. Rivera; Dietrich Trümbach; Uwe Ueberham; Herbert A. Reitsamer; Olaf Strauss; Ulrich Bogdahn; Sebastien Couillard-Despres; Ludwig Aigner
Members of the transforming growth factor (TGF)‐β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF‐β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF‐β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF‐β1 under a tetracycline regulatable Ca‐Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF‐β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF‐β1 signalling in adult NPCs. The results demonstrate that TGF‐β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF‐β1 in ageing and neurodegenerative diseases, TGF‐β1 signalling presents a molecular target for future interventions in such conditions.
Developmental Dynamics | 2009
Julia Marschallinger; Astrid Obermayer; Alexandra M. Sänger; Walter Stoiber; Peter Steinbacher
Muscle development in teleost embryos has been shown to depend on myogenic cell recruitment from the dermomyotome (DM). However, little is known as to the cellular mechanisms that account for myotome growth after the dissociation of the DM. Here we combine immunolabeling for cell‐specific markers with quantitative analysis to determine the sources and patterns of activation of myogenic cells in pearlfish larvae. Results demonstrate that appearance of mitotically active myogenic precursors inside the myotome coincides with the dissociation of the DM. Such cells are preferentially aggregated within the posterior lateral fast muscle. We therefore propose a growth model in which a pool of proliferative DM‐derived precursors transferred to the posterior lateral fast muscle functions as an important source of myogenic cell spread to carry forward stratified fast muscle hyperplasia. This indicates that postembryonic teleost muscle growth includes a cellular mechanism that has no direct equivalent in the amniotes. Developmental Dynamics 238:2442–2448, 2009.
The Journal of Experimental Biology | 2011
Peter Steinbacher; Julia Marschallinger; Astrid Obermayer; Alois Neuhofer; Alexandra M. Sänger; Walter Stoiber
SUMMARY Temperature is an important factor influencing teleost muscle growth, including a lasting (‘imprinted’) influence of embryonic thermal experience throughout all further life. However, little is known about the cellular processes behind this phenomenon. The study reported here used digital morphometry and immunolabelling for Pax7, myogenin and H3P to quantitatively examine the effects of thermal history on muscle precursor cell (MPC) behaviour and muscle growth in pearlfish (Rutilus meidingeri) until the adult stage. Fish were reared at three different temperatures (8.5, 13 and 16°C) until hatching and subsequently kept under the same (ambient) thermal conditions. Cellularity data were combined with a quantitative analysis of Pax7+ MPCs including those that were mitotically active (Pax7+/H3P+) or had entered differentiation (Pax7+/myogenin+). The results demonstrate that at hatching, body lengths, fast and slow muscle cross-sectional areas and fast fibre numbers are lower in fish reared at 8.5 and 13°C than at 16°C. During the larval period, this situation changes in the 13°C-fish, so that these fish are finally the largest. The observed effects can be related to divergent cellular mechanisms at the MPC level that are initiated in the embryo during the imprinting period. Embryos of 16°C-fish have reduced MPC proliferation but increased differentiation, and thus give rise to larger hatchlings. However, their limited MPC reserves finally lead to smaller adults. By contrast, embryos of 13°C-fish and, to a lesser extent, 8.5°-fish, show enhanced MPC proliferation but reduced differentiation, thus leading to smaller hatchlings but allowing for a larger MPC pool that can be used for enhanced post-hatching growth, finally resulting in larger adults.
Cellular Physiology and Biochemistry | 2011
Christophe Huber; Julia Marschallinger; Herbert Tempfer; Tanja Furtner; Sebastien Couillard-Despres; Hans-Christian Bauer; Francisco J. Rivera; Ludwig Aigner
Neural stem and progenitor cells serve as a reservoir for new neurons in the adult brain throughout lifetime. One of the critical steps determining the net production of new neurons is neural progenitor proliferation, which needs to be tightly controlled. Since inflammation has detrimental effects on neurogenesis and the 5-lipoxygenase/leukotriene pathway is involved in inflammatory processes, we investigated the effects of leukotrienes and montelukast, a small molecule inhibitor of the leukotriene receptors CysLT1R and GPR17, on neural stem and progenitor cell proliferation. We demonstrate expression of the leukotriene receptor GPR17 by neural progenitors and by neural stem cells. Stimulation with excess amounts of leukotrienes did not affect progenitor proliferation, whereas blockade of GPR17 with montelukast strongly elevated neural stem and progenitor proliferation, while maintaining their differentiation fate and potential. This effect was associated with increased ERK1/2 phosphorylation suggesting an involvement of the EGF signaling cascade. Based on our results, montelukast and the inhibition of the 5-LOX pathway might be potent candidates for future therapies employing neurogenesis to promote structural and functional improvement in neurodegeneration, neuropsychiatric disease and ageing.
Developmental Dynamics | 2008
Peter Steinbacher; V. Stadlmayr; Julia Marschallinger; Alexandra M. Sänger; Walter Stoiber
The predominant source of myogenic cells in vertebrates is the dermomyotome (DM). In teleost fish, recent research has provided a useful but limited picture of how myogenic precursors originate from the DM and how they develop into muscle fibers. Here, we combine detailed morphological analysis with examination of molecular markers in trout to describe the cellular mechanisms by which the lateral fast muscle growth zone is created during second phase myogenesis. Results suggest that this occurs by lateral‐to‐medial immigration of myogenic cells de‐epithelializing from the posterior DM lip. These cells then appear to stop proliferation and migrate anteriorly to finally differentiate into muscle fibres. This seems to be a continuation of the rotational cell movement that creates the teleost DM during early somite development. These findings suggest an evolutionary conserved role of the posterior DM lip in amniotes and fish. Developmental Dynamics 237:3233–3239, 2008.
Epilepsia | 2013
Peter Rotheneichner; Julia Marschallinger; Sebastien Couillard-Despres; Ludwig Aigner
Neurogenesis in the adult central nervous system has been well documented in several mammals including humans. By now, a plethora of data has been generated with the aim of understanding the molecular and cellular events governing neurogenesis. This growing comprehension will provide the basis for modulation of neurogenesis for therapeutic purposes, in particular in neurodegenerative diseases. Herein, we review the current knowledge on neurogenesis, in particular in the frame of epilepsy, since seizures have massive effects on neurogenesis. Conversely, some studies have suggested that aberrant neurogenesis might contribute to the development or manifestation of epilepsy and, moreover, chronic inhibition of neurogenesis in epilepsy might contribute to comorbidities of epilepsy such as cognitive deficits. Therefore, a better understanding of neurogenesis in the context of epilepsy is still required for future therapeutic purposes.
Cell Calcium | 2015
Julia Marschallinger; Anupam Sah; Claudia Schmuckermair; Michael S. Unger; Peter Rotheneichner; Kharitonova Mv; Alexander Waclawiczek; Philipp Gerner; Heidi Jaksch-Bogensperger; Stefan Berger; Jörg Striessnig; Nicolas Singewald; Sebastien Couillard-Despres; Ludwig Aigner
L-type voltage gated Ca(2+) channels (LTCCs) are widely expressed within different brain regions including the hippocampus. The isoforms Cav1.2 and Cav1.3 have been shown to be involved in hippocampus-dependent learning and memory, cognitive functions that require proper hippocampal neurogenesis. In vitro, functional LTCCs are expressed on neuronal progenitor cells, where they promote neuronal differentiation. Expression of LTCCs on neural stem and progenitor cells within the neurogenic regions in the adult brain in vivo has not been examined so far, and a contribution of the individual isoforms Cav1.2 and Cav1.3 to adult neurogenesis remained to be clarified. To reveal the role of these channels we first evaluated the expression patterns of Cav1.2 and Cav1.3 in the hippocampal dentate gyrus and the subventricular zone (SVZ) in adult (2- and 3-month old) and middle-aged (15-month old) mice on mRNA and protein levels. We performed immunohistological analysis of hippocampal neurogenesis in adult and middle-aged Cav1.3(-/-) mice and finally addressed the importance of Cav1.3 for hippocampal function by evaluating spatial memory and depression-like behavior in adult Cav1.3(-/-) mice. Our results showed Cav1.2 and Cav1.3 expression at different stages of neuronal differentiation. While Cav1.2 was primarily restricted to mature NeuN(+) granular neurons, Cav1.3 was expressed in Nestin(+) neural stem cells and in mature NeuN(+) granular neurons. Adult and middle-aged Cav1.3(-/-) mice showed severe impairments in dentate gyrus neurogenesis, with significantly smaller dentate gyrus volume, reduced survival of newly generated cells, and reduced neuronal differentiation. Further, Cav1.3(-/-) mice showed impairment in the hippocampus dependent object location memory test, implicating Cav1.3 as an essential element for hippocampus-associated cognitive functions. Thus, modulation of LTCC activities may have a crucial impact on neurogenic responses and cognition, which should be considered for future therapeutic administration of LTCCs modulators.