Astrid Obermayer
University of Salzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Astrid Obermayer.
Journal of Cystic Fibrosis | 2012
Reinhard Manzenreiter; Ferry Kienberger; Veronica Marcos; Kurt Schilcher; Wolf Dietrich Krautgartner; Astrid Obermayer; Marlene Huml; Walter Stoiber; Andreas Hector; Matthias Griese; Matthias Hannig; Michael Studnicka; Ljubomir Vitkov; Dominik Hartl
BACKGROUND Cystic fibrosis (CF) lung disease is characterized by perpetuated neutrophilic inflammation with progressive tissue destruction. Neutrophils represent the major cellular fraction in CF airway fluids and are known to form neutrophil extracellular traps (NETs) upon stimulation. Large amounts of extracellular DNA-NETs are present in CF airway fluids. However, the structural contribution of NETs to the matrix composition of CF airway fluid remains poorly understood. We hypothesized that CF airway fluids consist of distinct DNA-NETs that are associated to subcellular structures. METHODOLOGY/PRINCIPAL FINDINGS We employed atomic force microcopy (AFM) and scanning electron microcopy to ultrastructurally characterize the nature of CF sputum and the role of NETs within the extracellular CF sputum matrix. These studies demonstrate that CF sputum is predominantly composed of a high-density meshwork of NETs and NETosis-derived material. Treatment of CF sputum with different DNases degraded CF NETs and efficiently liquefied the mucous-like structure of CF sputum. Quantitative analysis of AFM results showed the presence of three globular fractions within CF sputum and the larger two ones featured characteristics of neutrophil ectosomes. CONCLUSIONS/SIGNIFICANCE These studies suggest that excessive NET formation represents the major factor underlying the gel-like structure of CF sputum and provide evidence that CF-NETs contain ectosome-like structures that could represent targets for future therapeutic approaches.
Respiratory Research | 2015
Fikreta Grabcanovic-Musija; Astrid Obermayer; Walter Stoiber; Wolf-Dietrich Krautgartner; Peter Steinbacher; Nicole Winterberg; Arne C. Bathke; Michaela Klappacher; Michael Studnicka
BackgroundCOPD is a progressive disease of the airways that is characterized by neutrophilic inflammation, a condition known to promote the excessive formation of neutrophil extracellular traps (NETs). The presence of large amounts of NETs has recently been demonstrated for a variety of inflammatory lung diseases including cystic fibrosis, asthma and exacerbated COPD.ObjectiveWe test whether excessive NET generation is restricted to exacerbation of COPD or whether it also occurs during stable periods of the disease, and whether NET presence and amount correlates with the severity of airflow limitation.Patients, materials and methodsSputum samples from four study groups were examined: COPD patients during acute exacerbation, patients with stable disease, and smoking and non-smoking controls without airflow limitation. Sputum induction followed the ECLIPSE protocol. Confocal laser microscopy (CLSM) and electron microscopy were used to analyse samples. Immunolabelling and fluorescent DNA staining were applied to trace NETs and related marker proteins. CLSM specimens served for quantitative evaluation.ResultsSputum of COPD patients is clearly characterised by NETs and NET-forming neutrophils. The presence of large amounts of NET is associated with disease severity (p < 0.001): over 90 % in exacerbated COPD, 45 % in stable COPD, and 25 % in smoking controls, but less than 5 % in non-smokers. Quantification of NET-covered areas in sputum preparations confirms these results.ConclusionsNET formation is not confined to exacerbation but also present in stable COPD and correlates with the severity of airflow limitation. We infer that NETs are a major contributor to chronic inflammatory and lung tissue damage in COPD.
Developmental Dynamics | 2007
Peter Steinbacher; John R. Haslett; Astrid Obermayer; Julia Marschallinger; Hans-Christian Bauer; Alexandra M. Sänger; Walter Stoiber
Muscle cell recruitment (hyperplasia) during myogenesis in the vertebrate embryo is known to occur in three consecutive phases. In teleost fish (including zebrafish), however, information on myogenic precursor cell activation is largely fragmentary, and comprehensive characterization of the myogenic phases has only been fully undertaken in a single slow‐growing cyprinid species by examination of MEF2D expression. Here, we use molecular techniques to provide a comprehensive characterization of MyoD and Myogenin expression during myogenic cell activation in embryos and larvae of brown trout, a fast‐growing salmonid with exceptionally large embryos. Results confirm the three‐phase pattern, but also demonstrate that the second and third phases begin simultaneously and progress vigorously, which is different from the previously described consecutive activation of these phases. Furthermore, we suggest that Pax7 is expressed in myogenic progenitor cells that account for second‐ and third‐phase myogenesis. These findings are discussed in relation to teleost myotome development and to teleost growth strategies. Developmental Dynamics 236:1106–1114, 2007.
Biomolecules | 2015
Walter Stoiber; Astrid Obermayer; Peter Steinbacher; Wolf-Dietrich Krautgartner
Extracellular traps (ETs) are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs) has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases. Since the discovery of ET formation (ETosis) a decade ago, evidence has accumulated that most reaction cascades leading to ET release involve ROS. An important new facet was added when it became apparent that ETosis might be directly linked to, or be a variant of, the autophagy cell death pathway. The present review analyzes the evidence to date on the interplay between ROS, autophagy and ETosis, and highlights and discusses several further aspects of the ROS-ET relationship that are incompletely understood. These aspects include the role of NADPH oxidase-derived ROS, the molecular requirements of NADPH oxidase-dependent ETosis, the roles of NADPH oxidase subtypes, extracellular ROS and of ROS from sources other than NADPH oxidase, and the present evidence for ROS-independent ETosis. We conclude that ROS interact with ETosis in a multidimensional manner, with influence on whether ETosis shows beneficial or detrimental effects.
PLOS ONE | 2014
Astrid Obermayer; Walter Stoiber; Wolf-Dietrich Krautgartner; Michaela Klappacher; Barbara Kofler; Peter Steinbacher; Ljubomir Vitkov; Fikreta Grabcanovic-Musija; Michael Studnicka
Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in ‘beads-on-a-string’ conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of ‘beads-on-a-string’ DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both the antimicrobial and the cytotoxic effects of NETs.
Ultrastructural Pathology | 2010
Wolf Dietrich Krautgartner; Michaela Klappacher; Matthias Hannig; Astrid Obermayer; Dominik Hartl; Veronica Marcos; Ljubomir Vitkov
Neutrophil extracellular traps (NETs) are extracellular web-like structures produced by activated polymorphonuclear neutrophils. NETs kill bacteria extracellularly, but their role in human pathology remains largely unclear. One possible way of studying NETs is through the SEM approach. However, web-like structures observed with SEM in sites of inflammation have been interpreted either as NETs or as fibrin. Thus, the question arises whether a reliable SEM discrimination between NETs and fibrin is at all possible. NET samples were collected as purulent crevicular exudate from periodontal pockets. DNase-digested controls for SEM were employed to demonstrate the DNA backbone and immuno-staining for confocal laser scanning microscopy was used to show the citrullinated histones of NETs. Blood clot samples were treated in the same way as the exudate samples to demonstrate that fibrin and fibrinolysis can mimic NETs and DNA digestion, respectively. No discrimination between fibrin and NETs based on morphological criteria in SEM was possible. Furthermore, only a vague distinction between DNA digestion and fibrinolysis could be made. These findings unambiguously indicate that the discrimination between NETs and fibrin by means of SEM is untrustworthy for samples of inflammatory exudate.
Developmental Dynamics | 2009
Julia Marschallinger; Astrid Obermayer; Alexandra M. Sänger; Walter Stoiber; Peter Steinbacher
Muscle development in teleost embryos has been shown to depend on myogenic cell recruitment from the dermomyotome (DM). However, little is known as to the cellular mechanisms that account for myotome growth after the dissociation of the DM. Here we combine immunolabeling for cell‐specific markers with quantitative analysis to determine the sources and patterns of activation of myogenic cells in pearlfish larvae. Results demonstrate that appearance of mitotically active myogenic precursors inside the myotome coincides with the dissociation of the DM. Such cells are preferentially aggregated within the posterior lateral fast muscle. We therefore propose a growth model in which a pool of proliferative DM‐derived precursors transferred to the posterior lateral fast muscle functions as an important source of myogenic cell spread to carry forward stratified fast muscle hyperplasia. This indicates that postembryonic teleost muscle growth includes a cellular mechanism that has no direct equivalent in the amniotes. Developmental Dynamics 238:2442–2448, 2009.
The Journal of Experimental Biology | 2011
Peter Steinbacher; Julia Marschallinger; Astrid Obermayer; Alois Neuhofer; Alexandra M. Sänger; Walter Stoiber
SUMMARY Temperature is an important factor influencing teleost muscle growth, including a lasting (‘imprinted’) influence of embryonic thermal experience throughout all further life. However, little is known about the cellular processes behind this phenomenon. The study reported here used digital morphometry and immunolabelling for Pax7, myogenin and H3P to quantitatively examine the effects of thermal history on muscle precursor cell (MPC) behaviour and muscle growth in pearlfish (Rutilus meidingeri) until the adult stage. Fish were reared at three different temperatures (8.5, 13 and 16°C) until hatching and subsequently kept under the same (ambient) thermal conditions. Cellularity data were combined with a quantitative analysis of Pax7+ MPCs including those that were mitotically active (Pax7+/H3P+) or had entered differentiation (Pax7+/myogenin+). The results demonstrate that at hatching, body lengths, fast and slow muscle cross-sectional areas and fast fibre numbers are lower in fish reared at 8.5 and 13°C than at 16°C. During the larval period, this situation changes in the 13°C-fish, so that these fish are finally the largest. The observed effects can be related to divergent cellular mechanisms at the MPC level that are initiated in the embryo during the imprinting period. Embryos of 16°C-fish have reduced MPC proliferation but increased differentiation, and thus give rise to larger hatchlings. However, their limited MPC reserves finally lead to smaller adults. By contrast, embryos of 13°C-fish and, to a lesser extent, 8.5°-fish, show enhanced MPC proliferation but reduced differentiation, thus leading to smaller hatchlings but allowing for a larger MPC pool that can be used for enhanced post-hatching growth, finally resulting in larger adults.
PLOS ONE | 2015
Ljubomir Vitkov; Wolf-Dietrich Krautgartner; Astrid Obermayer; Walter Stoiber; Matthias Hannig; Michaela Klappacher; Dominik Hartl
Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration.
Development Genes and Evolution | 2011
Stefanie E. Windner; Peter Steinbacher; Astrid Obermayer; Barna Kasiba; Josef Zweimueller-Mayer; Walter Stoiber
The formation of the body wall musculature in vertebrates is assumed to be initiated by direct ventral extension of the somites/myotomes. This contrasts to the formation of limb muscles and muscles involved in feeding or respiration/ventilation, which are founded by migratory muscle precursors (MMPs) distant to the somites. Here, we present evidence from morphology and expression of molecular markers proposing that the formation of the two muscle layers of the teleost body wall involves both of the above mechanisms: (1) MMPs from somites 5 and 6 found an independent muscle primordium–the so-called posterior hypaxial muscle (PHM)–which subsequently gives rise to the most anterior two segments of the medial obliquus inferioris (OI) muscle. (2) Direct epithelial extension of the hypaxial myotomes generates the OI segments from somite 7 caudalward and the entire lateral obliquus superioris (OS) muscle. The findings are discussed in relation to the evolution of hypaxial myogenic patterning including functional considerations. We hypothesise that the potential of the most anterior somites to generate migratory muscle precursors is a general vertebrate feature that has been differently utilised in the evolution in vertebrate groups.