Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia P. Vainonen is active.

Publication


Featured researches published by Julia P. Vainonen.


Plant Molecular Biology | 2006

State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis

Mikko Tikkanen; Mirva Piippo; Marjaana Suorsa; Sari Sirpiö; Paula Mulo; Julia P. Vainonen; Alexander V. Vener; Yagut Allahverdiyeva; Eva-Mari Aro

The mobile part of the light-harvesting chlorophyll (chl) a/b protein complex (LHCII), composed of the Lhcb1 and Lhcb2 proteins, is the basic unit of chloroplast state transitions—the short term tuning system in balancing the excitation energy between Photosystem (PS) II and PSI. State transitions are catalysed by the thylakoid associated STN7 kinase, and we show here that besides the phosphorylation of the Lhcb1 and Lhcb2 proteins, also the phosphorylation of Lhcb4.2 (CP29) is under the control of the STN7 kinase. Upon growth of Arabidopsis WT and stn7 mutant plants under low and moderate light conditions, the WT plants favoured state 2 whereas stn7 was locked in state 1. The lack of the STN7 kinase and state transitions in stn7 also modified the thylakoid protein contents upon long-term low light acclimation resulting, for example, in low Lhcb1 and in elevated Lhca1 and Lhca2 protein amounts as compared to WT. Adjustments of thylakoid protein contents probably occurred at post-transcriptional level since the DNA microarray experiments from each growth condition did not reveal any significant differences between stn7 and WT transcriptomes. The resulting high Lhcb2/Lhcb1 ratio in stn7 upon growth at low light was accompanied by lower capacity for NPQ than in WT. On the contrary, higher amounts of PsbS in stn7 under moderate and high light growth conditions resulted in higher NPQ compared to WT and consequently also in a protection of PSII against photoinhibition. STN7 kinase and the state transitions are suggested to have a physiological significance for dynamic acclimation to low but fluctuating growth light conditions. They are shown to function as a buffering system upon short high light illumination peaks by shifting the thylakoids from state 2 to state 1 and thereby down regulating the induction of stress-responsive genes, a likely result from transient over-reduction of PSI acceptors.


FEBS Journal | 2008

Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana

Julia P. Vainonen; Yumiko Sakuragi; Simon Stael; Mikko Tikkanen; Yagut Allahverdiyeva; Virpi Paakkarinen; Eveliina Aro; Marjaana Suorsa; Henrik Vibe Scheller; Alexander V. Vener; Eva-Mari Aro

Exposure of Arabidopsis thaliana plants to high levels of light revealed specific phosphorylation of a 40 kDa protein in photosynthetic thylakoid membranes. The protein was identified by MS as extracellular calcium‐sensing receptor (CaS), previously reported to be located in the plasma membrane. By confocal laser scanning microscopy and subcellular fractionation, it was demonstrated that CaS localizes to the chloroplasts and is enriched in stroma thylakoids. The phosphorylation level of CaS responded strongly to light intensity. The light‐dependent thylakoid protein kinase STN8 is required for CaS phosphorylation. The phosphorylation site was mapped to the stroma‐exposed Thr380, located in a motif for interaction with 14‐3‐3 proteins and proteins with forkhead‐associated domains, which suggests the involvement of CaS in stress responses and signaling pathways. The knockout Arabidopsis lines revealed a significant role for CaS in plant growth and development.


Frontiers in Plant Science | 2012

ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through.

Alexey Shapiguzov; Julia P. Vainonen; Michael Wrzaczek; Jaakko Kangasjärvi

The production of reactive oxygen species (ROS) in different plant subcellular compartments is the hallmark of the response to many stress stimuli and developmental cues. The past two decades have seen a transition from regarding ROS as exclusively cytotoxic agents to being considered as reactive compounds which participate in elaborate signaling networks connecting various aspects of plant life. We have now arrived at a stage where it has become increasingly difficult to disregard the communication between different types and pools of ROS. Production of ROS in the extracellular space, the apoplast, can influence their generation in the chloroplast and both can regulate nuclear gene expression. In spite of existing information on these signaling events, we can still barely grasp the mechanisms of ROS signaling and communication between the organelles. In this review, we summarize evidence that supports the mutual influence of extracellular and chloroplastic ROS production on nuclear gene regulation and how this interaction might occur. We also reflect on how, and via which routes signals might reach the nucleus where they are ultimately integrated for transcriptional reprogramming. New ideas and approaches will be needed in the future to address the pressing questions of how ROS as signaling molecules can participate in the coordination of stress adaptation and development and how they are involved in the chatter of the organelles.


Plant Journal | 2009

Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors.

Pinja Jaspers; Tiina Blomster; Mikael Brosché; Jarkko Salojärvi; Reetta Ahlfors; Julia P. Vainonen; Ramesha A. Reddy; Richard G. H. Immink; Gerco C. Angenent; Franziska Turck; Kirk Overmyer; Jaakko Kangasjärvi

RADICAL-INDUCED CELL DEATH1 (RCD1) is an important regulator of stress and hormonal and developmental responses in Arabidopsis thaliana. Together with its closest homolog, SIMILAR TO RCD-ONE1 (SRO1), it is the only Arabidopsis protein containing the WWE domain, which is known to mediate protein-protein interactions in other organisms. Additionally, these two proteins contain the core catalytic region of poly-ADP-ribose transferases and a conserved C-terminal domain. Tissue and subcellular localization data indicate that RCD1 and SRO1 have partially overlapping functions in plant development. In contrast mutant data indicate that rcd1 has defects in plant development, whereas sro1 displays normal development. However, the rcd1 sro1 double mutant has severe growth defects, indicating that RCD1 and SRO1 exemplify an important genetic principle - unequal genetic redundancy. A large pair-wise interaction test against the REGIA transcription factor collection revealed that RCD1 interacts with a large number of transcription factors belonging to several protein families, such as AP2/ERF, NAC and basic helix-loop-helix (bHLH), and that SRO1 interacts with a smaller subset of these. Full genome array analysis indicated that in many cases targets of these transcription factors have altered expression in the rcd1 but not the sro1 mutant. Taken together RCD1 and SRO1 are required for proper plant development.


Plant Physiology | 2013

Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation

Luis O. Morales; Mikael Brosché; Julia P. Vainonen; Gareth I. Jenkins; Jason J. Wargent; Nina Sipari; Åke Strid; Anders Lindfors; Riita Tegelberg; Pedro J. Aphalo

Summary: Under natural sunlight, this study demonstrates multiple and complex roles for the UV-B photoreceptor UV RESISTANCE LOCUS 8 in the acclimation of Arabidopsis plants to UV radiation. Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.


Biochemical Journal | 2007

TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle

Sari Sirpiö; Yagut Allahverdiyeva; Marjaana Suorsa; Virpi Paakkarinen; Julia P. Vainonen; Natalia Battchikova; Eva-Mari Aro

A proteome analysis of Arabidopsis thaliana thylakoid-associated polysome nascent chain complexes was performed to find novel proteins involved in the biogenesis, maintenance and turnover of thylakoid protein complexes, in particular the PSII (photosystem II) complex, which exhibits a high turnover rate. Four unknown proteins were identified, of which TLP18.3 (thylakoid lumen protein of 18.3 kDa) was selected for further analysis. The Arabidopsis mutants (SALK_109618 and GABI-Kat 459D12) lacking the TLP18.3 protein showed higher susceptibility of PSII to photoinhibition. The increased susceptibility of DeltaTLP18.3 plants to high light probably originates from an inefficient reassembly of PSII monomers into dimers in the grana stacks, as well as from an impaired turnover of the D1 protein in stroma exposed thylakoids. Such dual function of the TLP18.3 protein is in accordance with its even distribution between the grana and stroma thylakoids. Notably, the lack of the TLP18.3 protein does not lead to a severe collapse of the PSII complexes, suggesting a redundancy of proteins assisting these particular repair steps to assure functional PSII. The DeltaTLP18.3 plants showed no clear visual phenotype under standard growth conditions, but when challenged by fluctuating light during growth, the retarded growth of DeltaTLP18.3 plants was evident.


Plant Cell and Environment | 2015

Plant signalling in acute ozone exposure.

Julia P. Vainonen; Jaakko Kangasjärvi

Exposure of plants to high ozone concentrations causes lesion formation in sensitive plants. Plant responses to ozone involve fast and massive changes in protein activities, gene expression and metabolism even before any tissue damage can be detected. Degradation of ozone and subsequent accumulation of reactive oxygen species (ROS) in the extracellular space activates several signalling cascades, which are integrated inside the cell into a fine-balanced network of ROS signalling. Reversible protein phosphorylation and degradation plays an important role in the regulation of signalling mechanisms in a complex crosstalk with plant hormones and calcium, an essential second messenger. In this review, we discuss the recent advances in understanding the molecular mechanisms of ozone uptake, perception and signalling pathways activated during the early steps of ozone response, and discuss the use of ozone as a tool to study the function of apoplastic ROS in signalling.


Biochemical Journal | 2012

RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana.

Julia P. Vainonen; Pinja Jaspers; Michael Wrzaczek; Airi Lamminmäki; Ramesha A. Reddy; Lauri Vaahtera; Mikael Brosché; Jaakko Kangasjärvi

Transcriptional regulation of gene expression is one major determinant of developmental control and stress adaptation in virtually all living organisms. In recent years numerous transcription factors controlling various aspects of plant life have been identified. The activity of transcription factors needs to be regulated to prevent unspecific, prolonged or inappropriate responses. The transcription factor DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING 2A) has been identified as one of the main regulators of drought and heat responses, and it is regulated through protein stability. In the present paper we describe evidence that the interaction with RCD1 (RADICAL-INDUCED CELL DEATH 1) contributes to the control of DREB2A under a range of conditions. The interaction is mediated by a novel protein motif in DREB2A and a splice variant of DREB2A which lacks the interaction domain accumulates during heat stress and senescence. In addition RCD1 is rapidly degraded during heat stress, thus our results suggest that removal of RCD1 protein or the loss of the interaction domain in DREB2A appears to be required for proper DREB2A function under stress conditions.


Journal of Proteome Research | 2010

Dynamic Changes in the Proteome of Synechocystis 6803 in Response to CO2 Limitation Revealed by Quantitative Proteomics

Natalia Battchikova; Julia P. Vainonen; Natalia Vorontsova; Mika Keränen; Dalton Carmel; Eva-Mari Aro

Cyanobacteria developed efficient carbon concentrating mechanisms which significantly improve the photosynthetic performance and survival of cells under limiting CO(2) conditions. Dynamic changes of the Synechocystis proteome to CO(2) limitation were investigated using shotgun LC-MS/MS approach with isobaric tag for relative and absolute quantification (iTRAQ) technique. Synechocystis cells grown at high (3%) CO(2) were shifted to air-level CO(2) followed by protein extraction after 6, 24, and 72 h. About 19% of the cyanobacterial proteome was identified and the expression changes were quantified for 17% of theoretical ORFs. For 76 proteins, up- or down-regulation was found to be significant (more than 1.5 or less than 0.7). Major changes were observed in proteins participating in inorganic carbon uptake, CO(2) fixation, nitrogen transport and assimilation, as well as in the protection of the photosynthetic machinery from excess of light. Further, a number of hypothetical proteins with unknown functions were discovered. In general, the cells appear to acclimate to low CO(2) without a significant stress since the stress-related molecular chaperones were down-regulated and only a minor decline was detected for proteins of phycobilisomes, photosynthetic complexes, and translation machinery. The results of iTRAQ experiment were validated by the Western blot analysis for selected proteins.


BMC Genomics | 2010

The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

Pinja Jaspers; Kirk Overmyer; Michael Wrzaczek; Julia P. Vainonen; Tiina Blomster; Jarkko Salojärvi; Ramesha A. Reddy; Jaakko Kangasjärvi

BackgroundThe SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain.ResultsSROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity.ConclusionsThe SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

Collaboration


Dive into the Julia P. Vainonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge