Julia Rankin
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Rankin.
Clinical Genetics | 2006
Julia Rankin; Sian Ellard
The laminopathies are a diverse group of conditions caused by mutations in the LMNA gene (MIM*150330). LMNA encodes the nuclear envelope proteins lamin A and lamin C by utilization of an alternative splice site in exon 10. The human LMNA gene was identified in 1986 but it was another 13 years before it was found to be the causative gene for a disease, namely Emery Dreifuss muscular dystrophy. Since then, a further eight clearly defined phenotypes have been associated with LMNA mutations. The diversity of these phenotypes is striking with features such as premature ageing, axonal neuropathy, lipodystrophy and myopathy being seen. These phenotypes and the emerging genotype/phenotype correlations are the subject of this review.
Journal of Medical Genetics | 1999
Yolanda Narain; Andreas Wyttenbach; Julia Rankin; Robert A. Furlong; David C. Rubinsztein
Huntington’s disease (HD) is thought to show true dominance, since subjects with two mutant alleles have been reported to have similar ages at onset of disease compared to heterozygous sibs. We have investigated this phenomenon using a cell culture model. Protein aggregate formation was used as an indicator for pathology, as intraneuronal huntingtin inclusions are associated with pathology in vitro and in vivo. We showed that cytoplasmic and nuclear aggregates are formed by constructs comprising part of exon 1 of huntingtin with 41, 51, 66, or 72 CAG repeats, in a rate that correlates with repeat number. No inclusions were seen with 21 CAG repeat constructs. Mutant and wild type huntingtin fragments can be sequestered into inclusions seeded by a mutant huntingtin. Wild type huntingtin did not enhance or interfere with protein aggregation. The rate of protein aggregation was dose dependent for all mutant constructs tested. These experiments suggested a model for the dominance observed in HD; the decrease in the age at onset of a mutant homozygote may be small compared to the variance in the age at onset for that specific repeat number in heterozygotes. Our experiments also provide a model, which may explain the different repeat size ranges seen in patients and healthy controls for the different polyglutamine diseases.
American Journal of Medical Genetics Part A | 2008
Julia Rankin; Michaela Auer-Grumbach; Warwick Bagg; Kevin Colclough; Nguyen Thuy Duong; Jane Fenton-May; Andrew T. Hattersley; Judith Hudson; Philip Jardine; Dragana Josifova; Cheryl Longman; Robert McWilliam; Katharine R. Owen; M. Walker; Manfred Wehnert; Sian Ellard
Mutations in the LMNA gene result in diverse phenotypes including Emery Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy with conduction system disease, Dunnigan type familial partial lipodystrophy, mandibulo acral dysplasia, Hutchinson Gilford progeria syndrome, restrictive dermopathy and autosomal recessive Charcot Marie Tooth type 2. The c.1930C > T (R644C) missense mutation has previously been reported in eight unrelated patients with variable features including left ventricular hypertrophy, limb girdle muscle weakness, dilated cardiomyopathy and atypical progeria. Here we report on the details of nine additional patients in eight families with this mutation. Patients 1 and 2 presented with lipodystrophy and insulin resistance, Patient 1 having in addition focal segmental glomerulosclerosis. Patient 3 presented with motor neuropathy, Patient 4 with arthrogryposis and dilated cardiomyopathy with left ventricular non‐compaction, Patient 5 with severe scoliosis and contractures, Patient 6 with limb girdle weakness and Patient 7 with hepatic steatosis and insulin resistance. Patients 8 and 9 are brothers with proximal weakness and contractures. Nonpenetrance was observed frequently in first degree relatives. This report provides further evidence of the extreme phenotypic diversity and low penetrance associated with the R644C mutation. Possible explanations for these observations are discussed.
American Journal of Medical Genetics Part A | 2013
Katrina Tatton-Brown; Anne Murray; Sandra Hanks; Jenny Douglas; Ruth Armstrong; Siddharth Banka; Lynne M. Bird; Carol L. Clericuzio; Valérie Cormier-Daire; Tom Cushing; Frances Flinter; Marie Line Jacquemont; Shelagh Joss; Esther Kinning; Sally Ann Lynch; Alex Magee; Vivienne McConnell; Ana Medeira; Keiichi Ozono; Michael A. Patton; Julia Rankin; Debbie Shears; Marleen Simon; Miranda Splitt; Volker Strenger; Kyra Stuurman; Clare Taylor; Hannah Titheradge; Lionel Van Maldergem; I. Karen Temple
Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation‐positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ∼80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation‐positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.
Biochemical Journal | 2000
Julia Rankin; Andreas Wyttenbach; David C. Rubinsztein
Eight diseases, exemplified by Huntingtons disease and spinocerebellar ataxia type 1, are caused by CAG-repeat expansion mutations. The CAG repeats are translated into expanded polyglutamine tracts, which are associated with deleterious novel functions. While these diseases are characterized by intraneuronal aggregate formation, it is unclear whether the aggregates cause disease. We have addressed this debate by generating intracellular aggregates with green fluorescent protein (GFP) fused to 19-37 alanines. No aggregates were seen in cells expressing native GFP or GFP fused to seven alanines. Aggregate-containing cells expressing GFP fused to 19-37 polyalanines show high rates of nuclear fragmentation compared with cells expressing the same constructs without aggregates, or cells expressing GFP fused to seven alanines. This suggests an association between aggregate formation and cell death.
European Journal of Paediatric Neurology | 2010
Siddharth Shah; Yadlapalli Kumar; Brendan McLean; Amanda Churchill; Neil Stoodley; Julia Rankin; Patrizia Rizzu; Marjo S. van der Knaap; Philip Jardine
We describe a three generation family with recurrent strokes and cataracts. The index case, a 14 year old boy presented with stroke at the age of 14 years and again 6 months later. His mother had long standing episodic headaches diagnosed as migraine. Grandmother was initially diagnosed with multiple sclerosis and had recurrent strokes at age 18 years and 49 years. MRI scanning showed a diffuse leukoencephalopathy with microhaemorrhages in all three individuals. All of the family members had cataracts but did not have retinal arterial changes. Sequence analysis of COL4A1 revealed the heterozygous missense mutation c.2263G-->A in exon 30, responsible for a glycine-to-arginine substitution (p.Gly755Arg) in both the index case and mother. Grandmother died at the age of 73 years and DNA analysis was not possible. Mutation in COL4A1 should be considered in families with a history of autosomal dominant cerebral vasculopathy, even in the absence of porencephaly.
Journal of Medical Genetics | 1999
David C. Rubinsztein; Andreas Wyttenbach; Julia Rankin
The largest group of currently known trinucleotide repeat diseases is caused by (CAG)n repeat expansions. These (CAG)n repeats are translated into polyglutamine tracts from both mutant and wild type alleles. Genetic and transgenic mouse data suggest that the expanded polyglutamines cause disease by conferring a novel deleterious gain of function on the mutant protein. These mutations are associated with the formation of intracellular inclusions. This review will consider findings from necropsy studies of human patients and transgenic mouse models of these diseases, along with in vitro models, in order to try to synthesise the current understanding of these diseases and the evidence for and against inclusion formation as a primary mechanism leading to pathology.
American Journal of Medical Genetics Part A | 2010
Julia Rankin; Ruth M. Brown; William B. Dobyns; Judith Harington; Jay Patel; Michael Quinn; Garry K. Brown
Six subtypes of autosomal recessive pontocerebellar hypoplasia (PCH) have been identified and the genetic basis of four of these (PCH1, PCH2, PCH4, and PCH6) is known. PCH6 is associated with cerebral atrophy and multiple but variable respiratory chain defects in muscle and has been reported in one consanguineous Sephardic Jewish family. It is caused by mutations in the RARS2 gene which encodes mitochondrial arginine‐transfer RNA synthetase. Here we describe a female patient born to nonconsanguineous British parents. She presented in the neonatal period with increased respiratory rate, poor feeding and transiently elevated blood and CSF lactate levels. She went on to manifest profound developmental delay and severe microcephaly. Edema of the hands, feet, and face were suggestive of a PEHO‐like condition (progressive encephalopathy, edema, hypsarrhythmia and optic atrophy), although optic atrophy and hypsarrhythmia were absent. Cranial MRI at age 14 months showed generalized cerebral atrophy, thinning of the pons and gross atrophy and flattening of the cerebellar hemispheres. Muscle biopsies on two occasions were normal with normal respiratory chain studies. Despite the absence of respiratory chain defects, the phenotype was felt to be consistent with PCH6 and indeed two novel pathogenic RARS2 mutations were identified. Ours is the second report of PCH6 due to RARS2 mutations and demonstrates that respiratory chain abnormalities are not obligatory, whereas some features of PEHO might be present.
American Journal of Medical Genetics Part A | 2009
N. Simon Thomas; John F. Harvey; David J. Bunyan; Julia Rankin; Giedre Grigelioniene; Damien L. Bruno; Tiong Yang Tan; Susan Tomkins; Robert Hastings
Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long‐range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri–Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.
Developmental Medicine & Child Neurology | 2012
Siddharth Shah; Sian Ellard; Rachel Kneen; Ming Lim; Nigel Osborne; Julia Rankin; Neil Stoodley; Marjo S. van der Knaap; Andrea Whitney; Philip Jardine
Aim To describe the clinical and radiological features of four new families with a childhood presentation of COL4A1 mutation.